Metamath Proof Explorer


Theorem mulgcl

Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b 𝐵 = ( Base ‘ 𝐺 )
mulgnncl.t · = ( .g𝐺 )
Assertion mulgcl ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mulgnncl.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgnncl.t · = ( .g𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 id ( 𝐺 ∈ Grp → 𝐺 ∈ Grp )
5 ssidd ( 𝐺 ∈ Grp → 𝐵𝐵 )
6 1 3 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝐵 )
7 eqid ( 0g𝐺 ) = ( 0g𝐺 )
8 1 7 grpidcl ( 𝐺 ∈ Grp → ( 0g𝐺 ) ∈ 𝐵 )
9 eqid ( invg𝐺 ) = ( invg𝐺 )
10 1 9 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑥𝐵 ) → ( ( invg𝐺 ) ‘ 𝑥 ) ∈ 𝐵 )
11 1 2 3 4 5 6 7 8 9 10 mulgsubcl ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 )