| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnndir.b |
|
| 2 |
|
mulgnndir.t |
|
| 3 |
|
mulgnndir.p |
|
| 4 |
|
mndsgrp |
|
| 5 |
4
|
adantr |
|
| 6 |
5
|
ad2antrr |
|
| 7 |
|
simplr |
|
| 8 |
|
simpr |
|
| 9 |
|
simpr3 |
|
| 10 |
9
|
ad2antrr |
|
| 11 |
1 2 3
|
mulgnndir |
|
| 12 |
6 7 8 10 11
|
syl13anc |
|
| 13 |
|
simpll |
|
| 14 |
|
simpr1 |
|
| 15 |
14
|
adantr |
|
| 16 |
|
simplr3 |
|
| 17 |
1 2 13 15 16
|
mulgnn0cld |
|
| 18 |
|
eqid |
|
| 19 |
1 3 18
|
mndrid |
|
| 20 |
13 17 19
|
syl2anc |
|
| 21 |
|
simpr |
|
| 22 |
21
|
oveq1d |
|
| 23 |
1 18 2
|
mulg0 |
|
| 24 |
16 23
|
syl |
|
| 25 |
22 24
|
eqtrd |
|
| 26 |
25
|
oveq2d |
|
| 27 |
21
|
oveq2d |
|
| 28 |
15
|
nn0cnd |
|
| 29 |
28
|
addridd |
|
| 30 |
27 29
|
eqtrd |
|
| 31 |
30
|
oveq1d |
|
| 32 |
20 26 31
|
3eqtr4rd |
|
| 33 |
32
|
adantlr |
|
| 34 |
|
simpr2 |
|
| 35 |
|
elnn0 |
|
| 36 |
34 35
|
sylib |
|
| 37 |
36
|
adantr |
|
| 38 |
12 33 37
|
mpjaodan |
|
| 39 |
|
simpll |
|
| 40 |
|
simplr2 |
|
| 41 |
|
simplr3 |
|
| 42 |
1 2 39 40 41
|
mulgnn0cld |
|
| 43 |
1 3 18
|
mndlid |
|
| 44 |
39 42 43
|
syl2anc |
|
| 45 |
|
simpr |
|
| 46 |
45
|
oveq1d |
|
| 47 |
41 23
|
syl |
|
| 48 |
46 47
|
eqtrd |
|
| 49 |
48
|
oveq1d |
|
| 50 |
45
|
oveq1d |
|
| 51 |
40
|
nn0cnd |
|
| 52 |
51
|
addlidd |
|
| 53 |
50 52
|
eqtrd |
|
| 54 |
53
|
oveq1d |
|
| 55 |
44 49 54
|
3eqtr4rd |
|
| 56 |
|
elnn0 |
|
| 57 |
14 56
|
sylib |
|
| 58 |
38 55 57
|
mpjaodan |
|