| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnndir.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgnndir.t |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgnndir.p |
|- .+ = ( +g ` G ) |
| 4 |
|
mndsgrp |
|- ( G e. Mnd -> G e. Smgrp ) |
| 5 |
4
|
adantr |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) |
| 6 |
5
|
ad2antrr |
|- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> G e. Smgrp ) |
| 7 |
|
simplr |
|- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> M e. NN ) |
| 8 |
|
simpr |
|- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> N e. NN ) |
| 9 |
|
simpr3 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> X e. B ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> X e. B ) |
| 11 |
1 2 3
|
mulgnndir |
|- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 12 |
6 7 8 10 11
|
syl13anc |
|- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N e. NN ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 13 |
|
simpll |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> G e. Mnd ) |
| 14 |
|
simpr1 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> M e. NN0 ) |
| 15 |
14
|
adantr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> M e. NN0 ) |
| 16 |
|
simplr3 |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> X e. B ) |
| 17 |
1 2 13 15 16
|
mulgnn0cld |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M .x. X ) e. B ) |
| 18 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 19 |
1 3 18
|
mndrid |
|- ( ( G e. Mnd /\ ( M .x. X ) e. B ) -> ( ( M .x. X ) .+ ( 0g ` G ) ) = ( M .x. X ) ) |
| 20 |
13 17 19
|
syl2anc |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M .x. X ) .+ ( 0g ` G ) ) = ( M .x. X ) ) |
| 21 |
|
simpr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> N = 0 ) |
| 22 |
21
|
oveq1d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( N .x. X ) = ( 0 .x. X ) ) |
| 23 |
1 18 2
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 24 |
16 23
|
syl |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 25 |
22 24
|
eqtrd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( N .x. X ) = ( 0g ` G ) ) |
| 26 |
25
|
oveq2d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M .x. X ) .+ ( N .x. X ) ) = ( ( M .x. X ) .+ ( 0g ` G ) ) ) |
| 27 |
21
|
oveq2d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M + N ) = ( M + 0 ) ) |
| 28 |
15
|
nn0cnd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> M e. CC ) |
| 29 |
28
|
addridd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M + 0 ) = M ) |
| 30 |
27 29
|
eqtrd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( M + N ) = M ) |
| 31 |
30
|
oveq1d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M + N ) .x. X ) = ( M .x. X ) ) |
| 32 |
20 26 31
|
3eqtr4rd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ N = 0 ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 33 |
32
|
adantlr |
|- ( ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) /\ N = 0 ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 34 |
|
simpr2 |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> N e. NN0 ) |
| 35 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 36 |
34 35
|
sylib |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( N e. NN \/ N = 0 ) ) |
| 37 |
36
|
adantr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N e. NN \/ N = 0 ) ) |
| 38 |
12 33 37
|
mpjaodan |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 39 |
|
simpll |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> G e. Mnd ) |
| 40 |
|
simplr2 |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> N e. NN0 ) |
| 41 |
|
simplr3 |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> X e. B ) |
| 42 |
1 2 39 40 41
|
mulgnn0cld |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( N .x. X ) e. B ) |
| 43 |
1 3 18
|
mndlid |
|- ( ( G e. Mnd /\ ( N .x. X ) e. B ) -> ( ( 0g ` G ) .+ ( N .x. X ) ) = ( N .x. X ) ) |
| 44 |
39 42 43
|
syl2anc |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( 0g ` G ) .+ ( N .x. X ) ) = ( N .x. X ) ) |
| 45 |
|
simpr |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> M = 0 ) |
| 46 |
45
|
oveq1d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M .x. X ) = ( 0 .x. X ) ) |
| 47 |
41 23
|
syl |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 48 |
46 47
|
eqtrd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M .x. X ) = ( 0g ` G ) ) |
| 49 |
48
|
oveq1d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( M .x. X ) .+ ( N .x. X ) ) = ( ( 0g ` G ) .+ ( N .x. X ) ) ) |
| 50 |
45
|
oveq1d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M + N ) = ( 0 + N ) ) |
| 51 |
40
|
nn0cnd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> N e. CC ) |
| 52 |
51
|
addlidd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( 0 + N ) = N ) |
| 53 |
50 52
|
eqtrd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( M + N ) = N ) |
| 54 |
53
|
oveq1d |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( M + N ) .x. X ) = ( N .x. X ) ) |
| 55 |
44 49 54
|
3eqtr4rd |
|- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M = 0 ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |
| 56 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
| 57 |
14 56
|
sylib |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M e. NN \/ M = 0 ) ) |
| 58 |
38 55 57
|
mpjaodan |
|- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M + N ) .x. X ) = ( ( M .x. X ) .+ ( N .x. X ) ) ) |