Metamath Proof Explorer


Table of Contents - 11.1.4. Independent sets and families

According to the definition in [Lang] p. 129: "A subset S of a module M is said to be <b>linearly independent</b> (over A) if whenever we have a linear combination &sum;<sub>x&isin;S</sub>a<sub>x</sub>x which is equal to 0, then a<sub>x</sub> = 0 for all x &isin; S", and according to the Definition in [Lang] p. 130: "a familiy {x<sub>i</sub>}<sub>i&isin;I</sub> of elements of M is said to be <b>linearly independent</b> (over A) if whenever we have a linear combination &sum;<sub>i&isin;I</sub>a<sub>i</sub>x<sub>i</sub> = 0, then a<sub>i</sub> = 0 for all i &isin; I." These definitions correspond to the definitions df-linds and df-lindf respectively, where it is claimed that a nonzero summand can be extracted (&sum;<sub>i&isin;{I\{j}}</sub>a<sub>i</sub>x<sub>i</sub> = -a<sub>j</sub>x<sub>j</sub>) and be represented as a linear combination of the remaining elements of the family.

  1. clindf
  2. clinds
  3. df-lindf
  4. df-linds
  5. rellindf
  6. islinds
  7. linds1
  8. linds2
  9. islindf
  10. islinds2
  11. islindf2
  12. lindff
  13. lindfind
  14. lindsind
  15. lindfind2
  16. lindsind2
  17. lindff1
  18. lindfrn
  19. f1lindf
  20. lindfres
  21. lindsss
  22. f1linds
  23. islindf3
  24. lindfmm
  25. lindsmm
  26. lindsmm2
  27. lsslindf
  28. lsslinds
  29. islbs4
  30. lbslinds
  31. islinds3
  32. islinds4