Metamath Proof Explorer


Theorem lindsss

Description: Any subset of an independent set is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion lindsss W LMod F LIndS W G F G LIndS W

Proof

Step Hyp Ref Expression
1 eqid Base W = Base W
2 1 linds1 F LIndS W F Base W
3 2 adantl W LMod F LIndS W F Base W
4 sstr2 G F F Base W G Base W
5 3 4 syl5com W LMod F LIndS W G F G Base W
6 5 3impia W LMod F LIndS W G F G Base W
7 simp1 W LMod F LIndS W G F W LMod
8 linds2 F LIndS W I F LIndF W
9 8 3ad2ant2 W LMod F LIndS W G F I F LIndF W
10 lindfres W LMod I F LIndF W I F G LIndF W
11 7 9 10 syl2anc W LMod F LIndS W G F I F G LIndF W
12 resabs1 G F I F G = I G
13 12 breq1d G F I F G LIndF W I G LIndF W
14 13 3ad2ant3 W LMod F LIndS W G F I F G LIndF W I G LIndF W
15 11 14 mpbid W LMod F LIndS W G F I G LIndF W
16 1 islinds W LMod G LIndS W G Base W I G LIndF W
17 16 3ad2ant1 W LMod F LIndS W G F G LIndS W G Base W I G LIndF W
18 6 15 17 mpbir2and W LMod F LIndS W G F G LIndS W