Metamath Proof Explorer


Theorem lindfres

Description: Any restriction of an independent family is independent. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Assertion lindfres W LMod F LIndF W F X LIndF W

Proof

Step Hyp Ref Expression
1 coires1 F I dom F X = F dom F X
2 resdmres F dom F X = F X
3 1 2 eqtri F I dom F X = F X
4 f1oi I dom F X : dom F X 1-1 onto dom F X
5 f1of1 I dom F X : dom F X 1-1 onto dom F X I dom F X : dom F X 1-1 dom F X
6 4 5 ax-mp I dom F X : dom F X 1-1 dom F X
7 resss F X F
8 dmss F X F dom F X dom F
9 7 8 ax-mp dom F X dom F
10 f1ss I dom F X : dom F X 1-1 dom F X dom F X dom F I dom F X : dom F X 1-1 dom F
11 6 9 10 mp2an I dom F X : dom F X 1-1 dom F
12 f1lindf W LMod F LIndF W I dom F X : dom F X 1-1 dom F F I dom F X LIndF W
13 11 12 mp3an3 W LMod F LIndF W F I dom F X LIndF W
14 3 13 eqbrtrrid W LMod F LIndF W F X LIndF W