Step |
Hyp |
Ref |
Expression |
1 |
|
coires1 |
|- ( F o. ( _I |` dom ( F |` X ) ) ) = ( F |` dom ( F |` X ) ) |
2 |
|
resdmres |
|- ( F |` dom ( F |` X ) ) = ( F |` X ) |
3 |
1 2
|
eqtri |
|- ( F o. ( _I |` dom ( F |` X ) ) ) = ( F |` X ) |
4 |
|
f1oi |
|- ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-onto-> dom ( F |` X ) |
5 |
|
f1of1 |
|- ( ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-onto-> dom ( F |` X ) -> ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-> dom ( F |` X ) ) |
6 |
4 5
|
ax-mp |
|- ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-> dom ( F |` X ) |
7 |
|
resss |
|- ( F |` X ) C_ F |
8 |
|
dmss |
|- ( ( F |` X ) C_ F -> dom ( F |` X ) C_ dom F ) |
9 |
7 8
|
ax-mp |
|- dom ( F |` X ) C_ dom F |
10 |
|
f1ss |
|- ( ( ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-> dom ( F |` X ) /\ dom ( F |` X ) C_ dom F ) -> ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-> dom F ) |
11 |
6 9 10
|
mp2an |
|- ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-> dom F |
12 |
|
f1lindf |
|- ( ( W e. LMod /\ F LIndF W /\ ( _I |` dom ( F |` X ) ) : dom ( F |` X ) -1-1-> dom F ) -> ( F o. ( _I |` dom ( F |` X ) ) ) LIndF W ) |
13 |
11 12
|
mp3an3 |
|- ( ( W e. LMod /\ F LIndF W ) -> ( F o. ( _I |` dom ( F |` X ) ) ) LIndF W ) |
14 |
3 13
|
eqbrtrrid |
|- ( ( W e. LMod /\ F LIndF W ) -> ( F |` X ) LIndF W ) |