Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
2 |
1
|
linds1 |
|- ( F e. ( LIndS ` W ) -> F C_ ( Base ` W ) ) |
3 |
2
|
adantl |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) ) -> F C_ ( Base ` W ) ) |
4 |
|
sstr2 |
|- ( G C_ F -> ( F C_ ( Base ` W ) -> G C_ ( Base ` W ) ) ) |
5 |
3 4
|
syl5com |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) ) -> ( G C_ F -> G C_ ( Base ` W ) ) ) |
6 |
5
|
3impia |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> G C_ ( Base ` W ) ) |
7 |
|
simp1 |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> W e. LMod ) |
8 |
|
linds2 |
|- ( F e. ( LIndS ` W ) -> ( _I |` F ) LIndF W ) |
9 |
8
|
3ad2ant2 |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> ( _I |` F ) LIndF W ) |
10 |
|
lindfres |
|- ( ( W e. LMod /\ ( _I |` F ) LIndF W ) -> ( ( _I |` F ) |` G ) LIndF W ) |
11 |
7 9 10
|
syl2anc |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> ( ( _I |` F ) |` G ) LIndF W ) |
12 |
|
resabs1 |
|- ( G C_ F -> ( ( _I |` F ) |` G ) = ( _I |` G ) ) |
13 |
12
|
breq1d |
|- ( G C_ F -> ( ( ( _I |` F ) |` G ) LIndF W <-> ( _I |` G ) LIndF W ) ) |
14 |
13
|
3ad2ant3 |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> ( ( ( _I |` F ) |` G ) LIndF W <-> ( _I |` G ) LIndF W ) ) |
15 |
11 14
|
mpbid |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> ( _I |` G ) LIndF W ) |
16 |
1
|
islinds |
|- ( W e. LMod -> ( G e. ( LIndS ` W ) <-> ( G C_ ( Base ` W ) /\ ( _I |` G ) LIndF W ) ) ) |
17 |
16
|
3ad2ant1 |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> ( G e. ( LIndS ` W ) <-> ( G C_ ( Base ` W ) /\ ( _I |` G ) LIndF W ) ) ) |
18 |
6 15 17
|
mpbir2and |
|- ( ( W e. LMod /\ F e. ( LIndS ` W ) /\ G C_ F ) -> G e. ( LIndS ` W ) ) |