Step |
Hyp |
Ref |
Expression |
1 |
|
islinds.b |
|- B = ( Base ` W ) |
2 |
|
elex |
|- ( W e. V -> W e. _V ) |
3 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
4 |
3
|
pweqd |
|- ( w = W -> ~P ( Base ` w ) = ~P ( Base ` W ) ) |
5 |
|
breq2 |
|- ( w = W -> ( ( _I |` s ) LIndF w <-> ( _I |` s ) LIndF W ) ) |
6 |
4 5
|
rabeqbidv |
|- ( w = W -> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } = { s e. ~P ( Base ` W ) | ( _I |` s ) LIndF W } ) |
7 |
|
df-linds |
|- LIndS = ( w e. _V |-> { s e. ~P ( Base ` w ) | ( _I |` s ) LIndF w } ) |
8 |
|
fvex |
|- ( Base ` W ) e. _V |
9 |
8
|
pwex |
|- ~P ( Base ` W ) e. _V |
10 |
9
|
rabex |
|- { s e. ~P ( Base ` W ) | ( _I |` s ) LIndF W } e. _V |
11 |
6 7 10
|
fvmpt |
|- ( W e. _V -> ( LIndS ` W ) = { s e. ~P ( Base ` W ) | ( _I |` s ) LIndF W } ) |
12 |
2 11
|
syl |
|- ( W e. V -> ( LIndS ` W ) = { s e. ~P ( Base ` W ) | ( _I |` s ) LIndF W } ) |
13 |
12
|
eleq2d |
|- ( W e. V -> ( X e. ( LIndS ` W ) <-> X e. { s e. ~P ( Base ` W ) | ( _I |` s ) LIndF W } ) ) |
14 |
|
reseq2 |
|- ( s = X -> ( _I |` s ) = ( _I |` X ) ) |
15 |
14
|
breq1d |
|- ( s = X -> ( ( _I |` s ) LIndF W <-> ( _I |` X ) LIndF W ) ) |
16 |
15
|
elrab |
|- ( X e. { s e. ~P ( Base ` W ) | ( _I |` s ) LIndF W } <-> ( X e. ~P ( Base ` W ) /\ ( _I |` X ) LIndF W ) ) |
17 |
13 16
|
bitrdi |
|- ( W e. V -> ( X e. ( LIndS ` W ) <-> ( X e. ~P ( Base ` W ) /\ ( _I |` X ) LIndF W ) ) ) |
18 |
8
|
elpw2 |
|- ( X e. ~P ( Base ` W ) <-> X C_ ( Base ` W ) ) |
19 |
1
|
sseq2i |
|- ( X C_ B <-> X C_ ( Base ` W ) ) |
20 |
18 19
|
bitr4i |
|- ( X e. ~P ( Base ` W ) <-> X C_ B ) |
21 |
20
|
anbi1i |
|- ( ( X e. ~P ( Base ` W ) /\ ( _I |` X ) LIndF W ) <-> ( X C_ B /\ ( _I |` X ) LIndF W ) ) |
22 |
17 21
|
bitrdi |
|- ( W e. V -> ( X e. ( LIndS ` W ) <-> ( X C_ B /\ ( _I |` X ) LIndF W ) ) ) |