Metamath Proof Explorer
Table of Contents - 11.1. Vectors and free modules
- Direct sum of left modules
- cdsmm
- df-dsmm
- reldmdsmm
- dsmmval
- dsmmbase
- dsmmval2
- dsmmbas2
- dsmmfi
- dsmmelbas
- dsmm0cl
- dsmmacl
- prdsinvgd2
- dsmmsubg
- dsmmlss
- dsmmlmod
- Free modules
- cfrlm
- df-frlm
- frlmval
- frlmlmod
- frlmpws
- frlmlss
- frlmpwsfi
- frlmsca
- frlm0
- frlmbas
- frlmelbas
- frlmrcl
- frlmbasfsupp
- frlmbasmap
- frlmbasf
- frlmlvec
- frlmfibas
- elfrlmbasn0
- frlmplusgval
- frlmsubgval
- frlmvscafval
- frlmvplusgvalc
- frlmvscaval
- frlmplusgvalb
- frlmvscavalb
- frlmvplusgscavalb
- frlmgsum
- frlmsplit2
- frlmsslss
- frlmsslss2
- frlmbas3
- mpofrlmd
- frlmip
- frlmipval
- frlmphllem
- frlmphl
- Standard basis (unit vectors)
- cuvc
- df-uvc
- uvcfval
- uvcval
- uvcvval
- uvcvvcl
- uvcvvcl2
- uvcvv1
- uvcvv0
- uvcff
- uvcf1
- uvcresum
- frlmssuvc1
- frlmssuvc2
- frlmsslsp
- frlmlbs
- frlmup1
- frlmup2
- frlmup3
- frlmup4
- ellspd
- elfilspd
- Independent sets and families
- clindf
- clinds
- df-lindf
- df-linds
- rellindf
- islinds
- linds1
- linds2
- islindf
- islinds2
- islindf2
- lindff
- lindfind
- lindsind
- lindfind2
- lindsind2
- lindff1
- lindfrn
- f1lindf
- lindfres
- lindsss
- f1linds
- islindf3
- lindfmm
- lindsmm
- lindsmm2
- lsslindf
- lsslinds
- islbs4
- lbslinds
- islinds3
- islinds4
- Characterization of free modules
- lmimlbs
- lmiclbs
- islindf4
- islindf5
- indlcim
- lbslcic
- lmisfree
- lvecisfrlm
- lmimco
- lmictra
- uvcf1o
- uvcendim
- frlmisfrlm
- frlmiscvec