Metamath Proof Explorer
Table of Contents - 10.8.3. Algebraic constructions based on the complex numbers
- czrh
- czlm
- cchr
- czn
- df-zrh
- df-zlm
- df-chr
- df-zn
- zrhval
- zrhval2
- zrhmulg
- zrhrhmb
- zrhrhm
- zrh1
- zrh0
- zrhpropd
- zlmval
- zlmlem
- zlmlemOLD
- zlmbas
- zlmbasOLD
- zlmplusg
- zlmplusgOLD
- zlmmulr
- zlmmulrOLD
- zlmsca
- zlmvsca
- zlmlmod
- chrval
- chrcl
- chrid
- chrdvds
- chrcong
- chrnzr
- chrrhm
- domnchr
- znlidl
- zncrng2
- znval
- znle
- znval2
- znbaslem
- znbaslemOLD
- znbas2
- znbas2OLD
- znadd
- znaddOLD
- znmul
- znmulOLD
- znzrh
- znbas
- zncrng
- znzrh2
- znzrhval
- znzrhfo
- zncyg
- zndvds
- zndvds0
- znf1o
- zzngim
- znle2
- znleval
- znleval2
- zntoslem
- zntos
- znhash
- znfi
- znfld
- znidomb
- znchr
- znunit
- znunithash
- znrrg
- cygznlem1
- cygznlem2a
- cygznlem2
- cygznlem3
- cygzn
- cygth
- cyggic
- frgpcyg