Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
|- W = ( ZMod ` G ) |
2 |
|
zlmlem.2 |
|- E = Slot ( E ` ndx ) |
3 |
|
zlmlem.3 |
|- ( E ` ndx ) =/= ( Scalar ` ndx ) |
4 |
|
zlmlem.4 |
|- ( E ` ndx ) =/= ( .s ` ndx ) |
5 |
2 3
|
setsnid |
|- ( E ` G ) = ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
6 |
2 4
|
setsnid |
|- ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
7 |
5 6
|
eqtri |
|- ( E ` G ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
8 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
9 |
1 8
|
zlmval |
|- ( G e. _V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
10 |
9
|
fveq2d |
|- ( G e. _V -> ( E ` W ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
11 |
7 10
|
eqtr4id |
|- ( G e. _V -> ( E ` G ) = ( E ` W ) ) |
12 |
2
|
str0 |
|- (/) = ( E ` (/) ) |
13 |
12
|
eqcomi |
|- ( E ` (/) ) = (/) |
14 |
13 1
|
fveqprc |
|- ( -. G e. _V -> ( E ` G ) = ( E ` W ) ) |
15 |
11 14
|
pm2.61i |
|- ( E ` G ) = ( E ` W ) |