Metamath Proof Explorer


Theorem zlmlem

Description: Lemma for zlmbas and zlmplusg . (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w W = ℤMod G
zlmlem.2 E = Slot E ndx
zlmlem.3 E ndx Scalar ndx
zlmlem.4 E ndx ndx
Assertion zlmlem E G = E W

Proof

Step Hyp Ref Expression
1 zlmbas.w W = ℤMod G
2 zlmlem.2 E = Slot E ndx
3 zlmlem.3 E ndx Scalar ndx
4 zlmlem.4 E ndx ndx
5 2 3 setsnid E G = E G sSet Scalar ndx ring
6 2 4 setsnid E G sSet Scalar ndx ring = E G sSet Scalar ndx ring sSet ndx G
7 5 6 eqtri E G = E G sSet Scalar ndx ring sSet ndx G
8 eqid G = G
9 1 8 zlmval G V W = G sSet Scalar ndx ring sSet ndx G
10 9 fveq2d G V E W = E G sSet Scalar ndx ring sSet ndx G
11 7 10 eqtr4id G V E G = E W
12 2 str0 = E
13 12 eqcomi E =
14 13 1 fveqprc ¬ G V E G = E W
15 11 14 pm2.61i E G = E W