Metamath Proof Explorer


Definition df-zlm

Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Assertion df-zlm ℤMod=gVgsSetScalarndxringsSetndxg

Detailed syntax breakdown

Step Hyp Ref Expression
0 czlm classℤMod
1 vg setvarg
2 cvv classV
3 1 cv setvarg
4 csts classsSet
5 csca classScalar
6 cnx classndx
7 6 5 cfv classScalarndx
8 czring classring
9 7 8 cop classScalarndxring
10 3 9 4 co classgsSetScalarndxring
11 cvsca class𝑠
12 6 11 cfv classndx
13 cmg class𝑔
14 3 13 cfv classg
15 12 14 cop classndxg
16 10 15 4 co classgsSetScalarndxringsSetndxg
17 1 2 16 cmpt classgVgsSetScalarndxringsSetndxg
18 0 17 wceq wffℤMod=gVgsSetScalarndxringsSetndxg