Metamath Proof Explorer


Definition df-zlm

Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Assertion df-zlm ℤMod = ( 𝑔 ∈ V ↦ ( ( 𝑔 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝑔 ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 czlm ℤMod
1 vg 𝑔
2 cvv V
3 1 cv 𝑔
4 csts sSet
5 csca Scalar
6 cnx ndx
7 6 5 cfv ( Scalar ‘ ndx )
8 czring ring
9 7 8 cop ⟨ ( Scalar ‘ ndx ) , ℤring
10 3 9 4 co ( 𝑔 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ )
11 cvsca ·𝑠
12 6 11 cfv ( ·𝑠 ‘ ndx )
13 cmg .g
14 3 13 cfv ( .g𝑔 )
15 12 14 cop ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝑔 ) ⟩
16 10 15 4 co ( ( 𝑔 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝑔 ) ⟩ )
17 1 2 16 cmpt ( 𝑔 ∈ V ↦ ( ( 𝑔 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝑔 ) ⟩ ) )
18 0 17 wceq ℤMod = ( 𝑔 ∈ V ↦ ( ( 𝑔 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝑔 ) ⟩ ) )