Step |
Hyp |
Ref |
Expression |
0 |
|
czlm |
|- ZMod |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
1
|
cv |
|- g |
4 |
|
csts |
|- sSet |
5 |
|
csca |
|- Scalar |
6 |
|
cnx |
|- ndx |
7 |
6 5
|
cfv |
|- ( Scalar ` ndx ) |
8 |
|
czring |
|- ZZring |
9 |
7 8
|
cop |
|- <. ( Scalar ` ndx ) , ZZring >. |
10 |
3 9 4
|
co |
|- ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) |
11 |
|
cvsca |
|- .s |
12 |
6 11
|
cfv |
|- ( .s ` ndx ) |
13 |
|
cmg |
|- .g |
14 |
3 13
|
cfv |
|- ( .g ` g ) |
15 |
12 14
|
cop |
|- <. ( .s ` ndx ) , ( .g ` g ) >. |
16 |
10 15 4
|
co |
|- ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) |
17 |
1 2 16
|
cmpt |
|- ( g e. _V |-> ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) ) |
18 |
0 17
|
wceq |
|- ZMod = ( g e. _V |-> ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) ) |