Metamath Proof Explorer


Theorem fveqprc

Description: Lemma for showing the equality of values for functions like slot extractors E at a proper class. Extracted from several former proofs of lemmas like zlmlem . (Contributed by AV, 31-Oct-2024)

Ref Expression
Hypotheses fveqprc.e E=
fveqprc.y Y=FX
Assertion fveqprc ¬XVEX=EY

Proof

Step Hyp Ref Expression
1 fveqprc.e E=
2 fveqprc.y Y=FX
3 1 eqcomi =E
4 fvprc ¬XVEX=
5 fvprc ¬XVFX=
6 2 5 eqtrid ¬XVY=
7 6 fveq2d ¬XVEY=E
8 3 4 7 3eqtr4a ¬XVEX=EY