Metamath Proof Explorer


Theorem fveqprc

Description: Lemma for showing the equality of values for functions like slot extractors E at a proper class. Extracted from several former proofs of lemmas like zlmlem . (Contributed by AV, 31-Oct-2024)

Ref Expression
Hypotheses fveqprc.e
|- ( E ` (/) ) = (/)
fveqprc.y
|- Y = ( F ` X )
Assertion fveqprc
|- ( -. X e. _V -> ( E ` X ) = ( E ` Y ) )

Proof

Step Hyp Ref Expression
1 fveqprc.e
 |-  ( E ` (/) ) = (/)
2 fveqprc.y
 |-  Y = ( F ` X )
3 1 eqcomi
 |-  (/) = ( E ` (/) )
4 fvprc
 |-  ( -. X e. _V -> ( E ` X ) = (/) )
5 fvprc
 |-  ( -. X e. _V -> ( F ` X ) = (/) )
6 2 5 eqtrid
 |-  ( -. X e. _V -> Y = (/) )
7 6 fveq2d
 |-  ( -. X e. _V -> ( E ` Y ) = ( E ` (/) ) )
8 3 4 7 3eqtr4a
 |-  ( -. X e. _V -> ( E ` X ) = ( E ` Y ) )