Metamath Proof Explorer


Theorem zlmval

Description: Augment an abelian group with vector space operations to turn it into a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Hypotheses zlmval.w W=ℤModG
zlmval.m ·˙=G
Assertion zlmval GVW=GsSetScalarndxringsSetndx·˙

Proof

Step Hyp Ref Expression
1 zlmval.w W=ℤModG
2 zlmval.m ·˙=G
3 elex GVGV
4 oveq1 g=GgsSetScalarndxring=GsSetScalarndxring
5 fveq2 g=Gg=G
6 5 2 eqtr4di g=Gg=·˙
7 6 opeq2d g=Gndxg=ndx·˙
8 4 7 oveq12d g=GgsSetScalarndxringsSetndxg=GsSetScalarndxringsSetndx·˙
9 df-zlm ℤMod=gVgsSetScalarndxringsSetndxg
10 ovex GsSetScalarndxringsSetndx·˙V
11 8 9 10 fvmpt GVℤModG=GsSetScalarndxringsSetndx·˙
12 3 11 syl GVℤModG=GsSetScalarndxringsSetndx·˙
13 1 12 eqtrid GVW=GsSetScalarndxringsSetndx·˙