Metamath Proof Explorer


Theorem zlmlem

Description: Lemma for zlmbas and zlmplusg . (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
zlmlem.2 𝐸 = Slot ( 𝐸 ‘ ndx )
zlmlem.3 ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx )
zlmlem.4 ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
Assertion zlmlem ( 𝐸𝐺 ) = ( 𝐸𝑊 )

Proof

Step Hyp Ref Expression
1 zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
2 zlmlem.2 𝐸 = Slot ( 𝐸 ‘ ndx )
3 zlmlem.3 ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx )
4 zlmlem.4 ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
5 2 3 setsnid ( 𝐸𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) )
6 2 4 setsnid ( 𝐸 ‘ ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
7 5 6 eqtri ( 𝐸𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
8 eqid ( .g𝐺 ) = ( .g𝐺 )
9 1 8 zlmval ( 𝐺 ∈ V → 𝑊 = ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) )
10 9 fveq2d ( 𝐺 ∈ V → ( 𝐸𝑊 ) = ( 𝐸 ‘ ( ( 𝐺 sSet ⟨ ( Scalar ‘ ndx ) , ℤring ⟩ ) sSet ⟨ ( ·𝑠 ‘ ndx ) , ( .g𝐺 ) ⟩ ) ) )
11 7 10 eqtr4id ( 𝐺 ∈ V → ( 𝐸𝐺 ) = ( 𝐸𝑊 ) )
12 2 str0 ∅ = ( 𝐸 ‘ ∅ )
13 12 eqcomi ( 𝐸 ‘ ∅ ) = ∅
14 13 1 fveqprc ( ¬ 𝐺 ∈ V → ( 𝐸𝐺 ) = ( 𝐸𝑊 ) )
15 11 14 pm2.61i ( 𝐸𝐺 ) = ( 𝐸𝑊 )