Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
zlmlem.2 |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
3 |
|
zlmlem.3 |
⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
4 |
|
zlmlem.4 |
⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
5 |
2 3
|
setsnid |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) |
6 |
2 4
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
7 |
5 6
|
eqtri |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
8 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
9 |
1 8
|
zlmval |
⊢ ( 𝐺 ∈ V → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝐺 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) ) |
11 |
7 10
|
eqtr4id |
⊢ ( 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) ) |
12 |
2
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
13 |
12
|
eqcomi |
⊢ ( 𝐸 ‘ ∅ ) = ∅ |
14 |
13 1
|
fveqprc |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) ) |
15 |
11 14
|
pm2.61i |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) |