Metamath Proof Explorer


Theorem zlmplusg

Description: Group operation of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
zlmplusg.2 + = ( +g𝐺 )
Assertion zlmplusg + = ( +g𝑊 )

Proof

Step Hyp Ref Expression
1 zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
2 zlmplusg.2 + = ( +g𝐺 )
3 plusgid +g = Slot ( +g ‘ ndx )
4 scandxnplusgndx ( Scalar ‘ ndx ) ≠ ( +g ‘ ndx )
5 4 necomi ( +g ‘ ndx ) ≠ ( Scalar ‘ ndx )
6 vscandxnplusgndx ( ·𝑠 ‘ ndx ) ≠ ( +g ‘ ndx )
7 6 necomi ( +g ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
8 1 3 5 7 zlmlem ( +g𝐺 ) = ( +g𝑊 )
9 2 8 eqtri + = ( +g𝑊 )