Metamath Proof Explorer


Theorem zlmplusg

Description: Group operation of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w
|- W = ( ZMod ` G )
zlmplusg.2
|- .+ = ( +g ` G )
Assertion zlmplusg
|- .+ = ( +g ` W )

Proof

Step Hyp Ref Expression
1 zlmbas.w
 |-  W = ( ZMod ` G )
2 zlmplusg.2
 |-  .+ = ( +g ` G )
3 plusgid
 |-  +g = Slot ( +g ` ndx )
4 scandxnplusgndx
 |-  ( Scalar ` ndx ) =/= ( +g ` ndx )
5 4 necomi
 |-  ( +g ` ndx ) =/= ( Scalar ` ndx )
6 vscandxnplusgndx
 |-  ( .s ` ndx ) =/= ( +g ` ndx )
7 6 necomi
 |-  ( +g ` ndx ) =/= ( .s ` ndx )
8 1 3 5 7 zlmlem
 |-  ( +g ` G ) = ( +g ` W )
9 2 8 eqtri
 |-  .+ = ( +g ` W )