Metamath Proof Explorer


Theorem zlmplusg

Description: Group operation of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w W=ℤModG
zlmplusg.2 +˙=+G
Assertion zlmplusg +˙=+W

Proof

Step Hyp Ref Expression
1 zlmbas.w W=ℤModG
2 zlmplusg.2 +˙=+G
3 plusgid +𝑔=Slot+ndx
4 scandxnplusgndx Scalarndx+ndx
5 4 necomi +ndxScalarndx
6 vscandxnplusgndx ndx+ndx
7 6 necomi +ndxndx
8 1 3 5 7 zlmlem +G=+W
9 2 8 eqtri +˙=+W