Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) |
2 |
|
zlmlemOLD.2 |
⊢ 𝐸 = Slot 𝑁 |
3 |
|
zlmlemOLD.3 |
⊢ 𝑁 ∈ ℕ |
4 |
|
zlmlemOLD.4 |
⊢ 𝑁 < 5 |
5 |
2 3
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
6 |
2 3
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝑁 |
7 |
3
|
nnrei |
⊢ 𝑁 ∈ ℝ |
8 |
6 7
|
eqeltri |
⊢ ( 𝐸 ‘ ndx ) ∈ ℝ |
9 |
6 4
|
eqbrtri |
⊢ ( 𝐸 ‘ ndx ) < 5 |
10 |
8 9
|
ltneii |
⊢ ( 𝐸 ‘ ndx ) ≠ 5 |
11 |
|
scandx |
⊢ ( Scalar ‘ ndx ) = 5 |
12 |
10 11
|
neeqtrri |
⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
13 |
5 12
|
setsnid |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) |
14 |
|
5lt6 |
⊢ 5 < 6 |
15 |
|
5re |
⊢ 5 ∈ ℝ |
16 |
|
6re |
⊢ 6 ∈ ℝ |
17 |
8 15 16
|
lttri |
⊢ ( ( ( 𝐸 ‘ ndx ) < 5 ∧ 5 < 6 ) → ( 𝐸 ‘ ndx ) < 6 ) |
18 |
9 14 17
|
mp2an |
⊢ ( 𝐸 ‘ ndx ) < 6 |
19 |
8 18
|
ltneii |
⊢ ( 𝐸 ‘ ndx ) ≠ 6 |
20 |
|
vscandx |
⊢ ( ·𝑠 ‘ ndx ) = 6 |
21 |
19 20
|
neeqtrri |
⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
22 |
5 21
|
setsnid |
⊢ ( 𝐸 ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
23 |
13 22
|
eqtri |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
24 |
|
eqid |
⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) |
25 |
1 24
|
zlmval |
⊢ ( 𝐺 ∈ V → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝐺 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) ) |
27 |
23 26
|
eqtr4id |
⊢ ( 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) ) |
28 |
2
|
str0 |
⊢ ∅ = ( 𝐸 ‘ ∅ ) |
29 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ∅ ) |
30 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( ℤMod ‘ 𝐺 ) = ∅ ) |
31 |
1 30
|
eqtrid |
⊢ ( ¬ 𝐺 ∈ V → 𝑊 = ∅ ) |
32 |
31
|
fveq2d |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ∅ ) ) |
33 |
28 29 32
|
3eqtr4a |
⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) ) |
34 |
27 33
|
pm2.61i |
⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) |