Step |
Hyp |
Ref |
Expression |
0 |
|
czn |
|- Z/nZ |
1 |
|
vn |
|- n |
2 |
|
cn0 |
|- NN0 |
3 |
|
czring |
|- ZZring |
4 |
|
vz |
|- z |
5 |
4
|
cv |
|- z |
6 |
|
cqus |
|- /s |
7 |
|
cqg |
|- ~QG |
8 |
|
crsp |
|- RSpan |
9 |
5 8
|
cfv |
|- ( RSpan ` z ) |
10 |
1
|
cv |
|- n |
11 |
10
|
csn |
|- { n } |
12 |
11 9
|
cfv |
|- ( ( RSpan ` z ) ` { n } ) |
13 |
5 12 7
|
co |
|- ( z ~QG ( ( RSpan ` z ) ` { n } ) ) |
14 |
5 13 6
|
co |
|- ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) |
15 |
|
vs |
|- s |
16 |
15
|
cv |
|- s |
17 |
|
csts |
|- sSet |
18 |
|
cple |
|- le |
19 |
|
cnx |
|- ndx |
20 |
19 18
|
cfv |
|- ( le ` ndx ) |
21 |
|
czrh |
|- ZRHom |
22 |
16 21
|
cfv |
|- ( ZRHom ` s ) |
23 |
|
cc0 |
|- 0 |
24 |
10 23
|
wceq |
|- n = 0 |
25 |
|
cz |
|- ZZ |
26 |
|
cfzo |
|- ..^ |
27 |
23 10 26
|
co |
|- ( 0 ..^ n ) |
28 |
24 25 27
|
cif |
|- if ( n = 0 , ZZ , ( 0 ..^ n ) ) |
29 |
22 28
|
cres |
|- ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) |
30 |
|
vf |
|- f |
31 |
30
|
cv |
|- f |
32 |
|
cle |
|- <_ |
33 |
31 32
|
ccom |
|- ( f o. <_ ) |
34 |
31
|
ccnv |
|- `' f |
35 |
33 34
|
ccom |
|- ( ( f o. <_ ) o. `' f ) |
36 |
30 29 35
|
csb |
|- [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) |
37 |
20 36
|
cop |
|- <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. |
38 |
16 37 17
|
co |
|- ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) |
39 |
15 14 38
|
csb |
|- [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) |
40 |
4 3 39
|
csb |
|- [_ ZZring / z ]_ [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) |
41 |
1 2 40
|
cmpt |
|- ( n e. NN0 |-> [_ ZZring / z ]_ [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) ) |
42 |
0 41
|
wceq |
|- Z/nZ = ( n e. NN0 |-> [_ ZZring / z ]_ [_ ( z /s ( z ~QG ( ( RSpan ` z ) ` { n } ) ) ) / s ]_ ( s sSet <. ( le ` ndx ) , [_ ( ( ZRHom ` s ) |` if ( n = 0 , ZZ , ( 0 ..^ n ) ) ) / f ]_ ( ( f o. <_ ) o. `' f ) >. ) ) |