Step |
Hyp |
Ref |
Expression |
0 |
|
czn |
⊢ ℤ/nℤ |
1 |
|
vn |
⊢ 𝑛 |
2 |
|
cn0 |
⊢ ℕ0 |
3 |
|
czring |
⊢ ℤring |
4 |
|
vz |
⊢ 𝑧 |
5 |
4
|
cv |
⊢ 𝑧 |
6 |
|
cqus |
⊢ /s |
7 |
|
cqg |
⊢ ~QG |
8 |
|
crsp |
⊢ RSpan |
9 |
5 8
|
cfv |
⊢ ( RSpan ‘ 𝑧 ) |
10 |
1
|
cv |
⊢ 𝑛 |
11 |
10
|
csn |
⊢ { 𝑛 } |
12 |
11 9
|
cfv |
⊢ ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) |
13 |
5 12 7
|
co |
⊢ ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) |
14 |
5 13 6
|
co |
⊢ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) |
15 |
|
vs |
⊢ 𝑠 |
16 |
15
|
cv |
⊢ 𝑠 |
17 |
|
csts |
⊢ sSet |
18 |
|
cple |
⊢ le |
19 |
|
cnx |
⊢ ndx |
20 |
19 18
|
cfv |
⊢ ( le ‘ ndx ) |
21 |
|
czrh |
⊢ ℤRHom |
22 |
16 21
|
cfv |
⊢ ( ℤRHom ‘ 𝑠 ) |
23 |
|
cc0 |
⊢ 0 |
24 |
10 23
|
wceq |
⊢ 𝑛 = 0 |
25 |
|
cz |
⊢ ℤ |
26 |
|
cfzo |
⊢ ..^ |
27 |
23 10 26
|
co |
⊢ ( 0 ..^ 𝑛 ) |
28 |
24 25 27
|
cif |
⊢ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) |
29 |
22 28
|
cres |
⊢ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) |
30 |
|
vf |
⊢ 𝑓 |
31 |
30
|
cv |
⊢ 𝑓 |
32 |
|
cle |
⊢ ≤ |
33 |
31 32
|
ccom |
⊢ ( 𝑓 ∘ ≤ ) |
34 |
31
|
ccnv |
⊢ ◡ 𝑓 |
35 |
33 34
|
ccom |
⊢ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) |
36 |
30 29 35
|
csb |
⊢ ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) |
37 |
20 36
|
cop |
⊢ 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 |
38 |
16 37 17
|
co |
⊢ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
39 |
15 14 38
|
csb |
⊢ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
40 |
4 3 39
|
csb |
⊢ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
41 |
1 2 40
|
cmpt |
⊢ ( 𝑛 ∈ ℕ0 ↦ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) ) |
42 |
0 41
|
wceq |
⊢ ℤ/nℤ = ( 𝑛 ∈ ℕ0 ↦ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) ) |