| Step |
Hyp |
Ref |
Expression |
| 0 |
|
czn |
⊢ ℤ/nℤ |
| 1 |
|
vn |
⊢ 𝑛 |
| 2 |
|
cn0 |
⊢ ℕ0 |
| 3 |
|
czring |
⊢ ℤring |
| 4 |
|
vz |
⊢ 𝑧 |
| 5 |
4
|
cv |
⊢ 𝑧 |
| 6 |
|
cqus |
⊢ /s |
| 7 |
|
cqg |
⊢ ~QG |
| 8 |
|
crsp |
⊢ RSpan |
| 9 |
5 8
|
cfv |
⊢ ( RSpan ‘ 𝑧 ) |
| 10 |
1
|
cv |
⊢ 𝑛 |
| 11 |
10
|
csn |
⊢ { 𝑛 } |
| 12 |
11 9
|
cfv |
⊢ ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) |
| 13 |
5 12 7
|
co |
⊢ ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) |
| 14 |
5 13 6
|
co |
⊢ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) |
| 15 |
|
vs |
⊢ 𝑠 |
| 16 |
15
|
cv |
⊢ 𝑠 |
| 17 |
|
csts |
⊢ sSet |
| 18 |
|
cple |
⊢ le |
| 19 |
|
cnx |
⊢ ndx |
| 20 |
19 18
|
cfv |
⊢ ( le ‘ ndx ) |
| 21 |
|
czrh |
⊢ ℤRHom |
| 22 |
16 21
|
cfv |
⊢ ( ℤRHom ‘ 𝑠 ) |
| 23 |
|
cc0 |
⊢ 0 |
| 24 |
10 23
|
wceq |
⊢ 𝑛 = 0 |
| 25 |
|
cz |
⊢ ℤ |
| 26 |
|
cfzo |
⊢ ..^ |
| 27 |
23 10 26
|
co |
⊢ ( 0 ..^ 𝑛 ) |
| 28 |
24 25 27
|
cif |
⊢ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) |
| 29 |
22 28
|
cres |
⊢ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) |
| 30 |
|
vf |
⊢ 𝑓 |
| 31 |
30
|
cv |
⊢ 𝑓 |
| 32 |
|
cle |
⊢ ≤ |
| 33 |
31 32
|
ccom |
⊢ ( 𝑓 ∘ ≤ ) |
| 34 |
31
|
ccnv |
⊢ ◡ 𝑓 |
| 35 |
33 34
|
ccom |
⊢ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) |
| 36 |
30 29 35
|
csb |
⊢ ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) |
| 37 |
20 36
|
cop |
⊢ 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 |
| 38 |
16 37 17
|
co |
⊢ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
| 39 |
15 14 38
|
csb |
⊢ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
| 40 |
4 3 39
|
csb |
⊢ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) |
| 41 |
1 2 40
|
cmpt |
⊢ ( 𝑛 ∈ ℕ0 ↦ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) ) |
| 42 |
0 41
|
wceq |
⊢ ℤ/nℤ = ( 𝑛 ∈ ℕ0 ↦ ⦋ ℤring / 𝑧 ⦌ ⦋ ( 𝑧 /s ( 𝑧 ~QG ( ( RSpan ‘ 𝑧 ) ‘ { 𝑛 } ) ) ) / 𝑠 ⦌ ( 𝑠 sSet 〈 ( le ‘ ndx ) , ⦋ ( ( ℤRHom ‘ 𝑠 ) ↾ if ( 𝑛 = 0 , ℤ , ( 0 ..^ 𝑛 ) ) ) / 𝑓 ⦌ ( ( 𝑓 ∘ ≤ ) ∘ ◡ 𝑓 ) 〉 ) ) |