Metamath Proof Explorer


Theorem znbaslem

Description: Lemma for znbas . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 9-Sep-2021) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses znval2.s
|- S = ( RSpan ` ZZring )
znval2.u
|- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) )
znval2.y
|- Y = ( Z/nZ ` N )
znbaslem.e
|- E = Slot ( E ` ndx )
znbaslem.n
|- ( E ` ndx ) =/= ( le ` ndx )
Assertion znbaslem
|- ( N e. NN0 -> ( E ` U ) = ( E ` Y ) )

Proof

Step Hyp Ref Expression
1 znval2.s
 |-  S = ( RSpan ` ZZring )
2 znval2.u
 |-  U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) )
3 znval2.y
 |-  Y = ( Z/nZ ` N )
4 znbaslem.e
 |-  E = Slot ( E ` ndx )
5 znbaslem.n
 |-  ( E ` ndx ) =/= ( le ` ndx )
6 4 5 setsnid
 |-  ( E ` U ) = ( E ` ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) )
7 eqid
 |-  ( le ` Y ) = ( le ` Y )
8 1 2 3 7 znval2
 |-  ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) )
9 8 fveq2d
 |-  ( N e. NN0 -> ( E ` Y ) = ( E ` ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) ) )
10 6 9 eqtr4id
 |-  ( N e. NN0 -> ( E ` U ) = ( E ` Y ) )