Step |
Hyp |
Ref |
Expression |
1 |
|
znval2.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
2 |
|
znval2.u |
⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
3 |
|
znval2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
znbaslem.e |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
5 |
|
znbaslem.n |
⊢ ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) |
6 |
4 5
|
setsnid |
⊢ ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) |
7 |
|
eqid |
⊢ ( le ‘ 𝑌 ) = ( le ‘ 𝑌 ) |
8 |
1 2 3 7
|
znval2 |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ‘ 𝑌 ) = ( 𝐸 ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) ) |
10 |
6 9
|
eqtr4id |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ 𝑌 ) ) |