Step |
Hyp |
Ref |
Expression |
1 |
|
znval2.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
2 |
|
znval2.u |
⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
3 |
|
znval2.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
4 |
|
znbaslemOLD.e |
⊢ 𝐸 = Slot 𝐾 |
5 |
|
znbaslemOLD.k |
⊢ 𝐾 ∈ ℕ |
6 |
|
znbaslemOLD.l |
⊢ 𝐾 < ; 1 0 |
7 |
4 5
|
ndxid |
⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) |
8 |
5
|
nnrei |
⊢ 𝐾 ∈ ℝ |
9 |
8 6
|
ltneii |
⊢ 𝐾 ≠ ; 1 0 |
10 |
4 5
|
ndxarg |
⊢ ( 𝐸 ‘ ndx ) = 𝐾 |
11 |
|
plendx |
⊢ ( le ‘ ndx ) = ; 1 0 |
12 |
10 11
|
neeq12i |
⊢ ( ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) ↔ 𝐾 ≠ ; 1 0 ) |
13 |
9 12
|
mpbir |
⊢ ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) |
14 |
7 13
|
setsnid |
⊢ ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) |
15 |
|
eqid |
⊢ ( le ‘ 𝑌 ) = ( le ‘ 𝑌 ) |
16 |
1 2 3 15
|
znval2 |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ‘ 𝑌 ) = ( 𝐸 ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) ) |
18 |
14 17
|
eqtr4id |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ 𝑌 ) ) |