Metamath Proof Explorer


Theorem znval2

Description: Self-referential expression for the Z/nZ structure. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znval2.s 𝑆 = ( RSpan ‘ ℤring )
znval2.u 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
znval2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
znval2.l = ( le ‘ 𝑌 )
Assertion znval2 ( 𝑁 ∈ ℕ0𝑌 = ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ⟩ ) )

Proof

Step Hyp Ref Expression
1 znval2.s 𝑆 = ( RSpan ‘ ℤring )
2 znval2.u 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) )
3 znval2.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
4 znval2.l = ( le ‘ 𝑌 )
5 eqid ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) = ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) )
6 eqid if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) )
7 eqid ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) )
8 1 2 3 5 6 7 znval ( 𝑁 ∈ ℕ0𝑌 = ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) ⟩ ) )
9 1 2 3 5 6 4 znle ( 𝑁 ∈ ℕ0 = ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) )
10 9 opeq2d ( 𝑁 ∈ ℕ0 → ⟨ ( le ‘ ndx ) , ⟩ = ⟨ ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) ⟩ )
11 10 oveq2d ( 𝑁 ∈ ℕ0 → ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ⟩ ) = ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) ⟩ ) )
12 8 11 eqtr4d ( 𝑁 ∈ ℕ0𝑌 = ( 𝑈 sSet ⟨ ( le ‘ ndx ) , ⟩ ) )