| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znval.s |
⊢ 𝑆 = ( RSpan ‘ ℤring ) |
| 2 |
|
znval.u |
⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) |
| 3 |
|
znval.y |
⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) |
| 4 |
|
znval.f |
⊢ 𝐹 = ( ( ℤRHom ‘ 𝑈 ) ↾ 𝑊 ) |
| 5 |
|
znval.w |
⊢ 𝑊 = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) |
| 6 |
|
znle.l |
⊢ ≤ = ( le ‘ 𝑌 ) |
| 7 |
|
eqid |
⊢ ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) |
| 8 |
1 2 3 4 5 7
|
znval |
⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 〉 ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( le ‘ 𝑌 ) = ( le ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 〉 ) ) ) |
| 10 |
2
|
ovexi |
⊢ 𝑈 ∈ V |
| 11 |
|
fvex |
⊢ ( ℤRHom ‘ 𝑈 ) ∈ V |
| 12 |
11
|
resex |
⊢ ( ( ℤRHom ‘ 𝑈 ) ↾ 𝑊 ) ∈ V |
| 13 |
4 12
|
eqeltri |
⊢ 𝐹 ∈ V |
| 14 |
|
xrex |
⊢ ℝ* ∈ V |
| 15 |
14 14
|
xpex |
⊢ ( ℝ* × ℝ* ) ∈ V |
| 16 |
|
lerelxr |
⊢ ≤ ⊆ ( ℝ* × ℝ* ) |
| 17 |
15 16
|
ssexi |
⊢ ≤ ∈ V |
| 18 |
13 17
|
coex |
⊢ ( 𝐹 ∘ ≤ ) ∈ V |
| 19 |
13
|
cnvex |
⊢ ◡ 𝐹 ∈ V |
| 20 |
18 19
|
coex |
⊢ ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ∈ V |
| 21 |
|
pleid |
⊢ le = Slot ( le ‘ ndx ) |
| 22 |
21
|
setsid |
⊢ ( ( 𝑈 ∈ V ∧ ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ∈ V ) → ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) = ( le ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 〉 ) ) ) |
| 23 |
10 20 22
|
mp2an |
⊢ ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) = ( le ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) 〉 ) ) |
| 24 |
9 6 23
|
3eqtr4g |
⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( 𝐹 ∘ ≤ ) ∘ ◡ 𝐹 ) ) |