| Step |
Hyp |
Ref |
Expression |
| 1 |
|
znval.s |
|- S = ( RSpan ` ZZring ) |
| 2 |
|
znval.u |
|- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
| 3 |
|
znval.y |
|- Y = ( Z/nZ ` N ) |
| 4 |
|
znval.f |
|- F = ( ( ZRHom ` U ) |` W ) |
| 5 |
|
znval.w |
|- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
| 6 |
|
znle.l |
|- .<_ = ( le ` Y ) |
| 7 |
|
eqid |
|- ( ( F o. <_ ) o. `' F ) = ( ( F o. <_ ) o. `' F ) |
| 8 |
1 2 3 4 5 7
|
znval |
|- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) |
| 9 |
8
|
fveq2d |
|- ( N e. NN0 -> ( le ` Y ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) ) |
| 10 |
2
|
ovexi |
|- U e. _V |
| 11 |
|
fvex |
|- ( ZRHom ` U ) e. _V |
| 12 |
11
|
resex |
|- ( ( ZRHom ` U ) |` W ) e. _V |
| 13 |
4 12
|
eqeltri |
|- F e. _V |
| 14 |
|
xrex |
|- RR* e. _V |
| 15 |
14 14
|
xpex |
|- ( RR* X. RR* ) e. _V |
| 16 |
|
lerelxr |
|- <_ C_ ( RR* X. RR* ) |
| 17 |
15 16
|
ssexi |
|- <_ e. _V |
| 18 |
13 17
|
coex |
|- ( F o. <_ ) e. _V |
| 19 |
13
|
cnvex |
|- `' F e. _V |
| 20 |
18 19
|
coex |
|- ( ( F o. <_ ) o. `' F ) e. _V |
| 21 |
|
pleid |
|- le = Slot ( le ` ndx ) |
| 22 |
21
|
setsid |
|- ( ( U e. _V /\ ( ( F o. <_ ) o. `' F ) e. _V ) -> ( ( F o. <_ ) o. `' F ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) ) |
| 23 |
10 20 22
|
mp2an |
|- ( ( F o. <_ ) o. `' F ) = ( le ` ( U sSet <. ( le ` ndx ) , ( ( F o. <_ ) o. `' F ) >. ) ) |
| 24 |
9 6 23
|
3eqtr4g |
|- ( N e. NN0 -> .<_ = ( ( F o. <_ ) o. `' F ) ) |