Metamath Proof Explorer


Theorem znbaslem

Description: Lemma for znbas . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 9-Sep-2021) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses znval2.s S = RSpan ring
znval2.u U = ring / 𝑠 ring ~ QG S N
znval2.y Y = /N
znbaslem.e E = Slot E ndx
znbaslem.n E ndx ndx
Assertion znbaslem N 0 E U = E Y

Proof

Step Hyp Ref Expression
1 znval2.s S = RSpan ring
2 znval2.u U = ring / 𝑠 ring ~ QG S N
3 znval2.y Y = /N
4 znbaslem.e E = Slot E ndx
5 znbaslem.n E ndx ndx
6 4 5 setsnid E U = E U sSet ndx Y
7 eqid Y = Y
8 1 2 3 7 znval2 N 0 Y = U sSet ndx Y
9 8 fveq2d N 0 E Y = E U sSet ndx Y
10 6 9 eqtr4id N 0 E U = E Y