Metamath Proof Explorer


Theorem zlmmulr

Description: Ring operation of a ZZ -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w
|- W = ( ZMod ` G )
zlmmulr.2
|- .x. = ( .r ` G )
Assertion zlmmulr
|- .x. = ( .r ` W )

Proof

Step Hyp Ref Expression
1 zlmbas.w
 |-  W = ( ZMod ` G )
2 zlmmulr.2
 |-  .x. = ( .r ` G )
3 mulrid
 |-  .r = Slot ( .r ` ndx )
4 scandxnmulrndx
 |-  ( Scalar ` ndx ) =/= ( .r ` ndx )
5 4 necomi
 |-  ( .r ` ndx ) =/= ( Scalar ` ndx )
6 vscandxnmulrndx
 |-  ( .s ` ndx ) =/= ( .r ` ndx )
7 6 necomi
 |-  ( .r ` ndx ) =/= ( .s ` ndx )
8 1 3 5 7 zlmlem
 |-  ( .r ` G ) = ( .r ` W )
9 2 8 eqtri
 |-  .x. = ( .r ` W )