Description: Ring operation of a ZZ -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zlmbas.w | |- W = ( ZMod ` G ) |
|
zlmmulr.2 | |- .x. = ( .r ` G ) |
||
Assertion | zlmmulr | |- .x. = ( .r ` W ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmbas.w | |- W = ( ZMod ` G ) |
|
2 | zlmmulr.2 | |- .x. = ( .r ` G ) |
|
3 | mulrid | |- .r = Slot ( .r ` ndx ) |
|
4 | scandxnmulrndx | |- ( Scalar ` ndx ) =/= ( .r ` ndx ) |
|
5 | 4 | necomi | |- ( .r ` ndx ) =/= ( Scalar ` ndx ) |
6 | vscandxnmulrndx | |- ( .s ` ndx ) =/= ( .r ` ndx ) |
|
7 | 6 | necomi | |- ( .r ` ndx ) =/= ( .s ` ndx ) |
8 | 1 3 5 7 | zlmlem | |- ( .r ` G ) = ( .r ` W ) |
9 | 2 8 | eqtri | |- .x. = ( .r ` W ) |