Metamath Proof Explorer


Theorem zlmmulr

Description: Ring operation of a ZZ -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w W=ℤModG
zlmmulr.2 ·˙=G
Assertion zlmmulr ·˙=W

Proof

Step Hyp Ref Expression
1 zlmbas.w W=ℤModG
2 zlmmulr.2 ·˙=G
3 mulridx 𝑟=Slotndx
4 scandxnmulrndx Scalarndxndx
5 4 necomi ndxScalarndx
6 vscandxnmulrndx ndxndx
7 6 necomi ndxndx
8 1 3 5 7 zlmlem G=W
9 2 8 eqtri ·˙=W