Metamath Proof Explorer


Theorem zlmmulr

Description: Ring operation of a ZZ -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
zlmmulr.2 · = ( .r𝐺 )
Assertion zlmmulr · = ( .r𝑊 )

Proof

Step Hyp Ref Expression
1 zlmbas.w 𝑊 = ( ℤMod ‘ 𝐺 )
2 zlmmulr.2 · = ( .r𝐺 )
3 mulrid .r = Slot ( .r ‘ ndx )
4 scandxnmulrndx ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx )
5 4 necomi ( .r ‘ ndx ) ≠ ( Scalar ‘ ndx )
6 vscandxnmulrndx ( ·𝑠 ‘ ndx ) ≠ ( .r ‘ ndx )
7 6 necomi ( .r ‘ ndx ) ≠ ( ·𝑠 ‘ ndx )
8 1 3 5 7 zlmlem ( .r𝐺 ) = ( .r𝑊 )
9 2 8 eqtri · = ( .r𝑊 )