Description: Ring operation of a ZZ -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
zlmmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | ||
Assertion | zlmmulr | ⊢ · = ( .r ‘ 𝑊 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
2 | zlmmulr.2 | ⊢ · = ( .r ‘ 𝐺 ) | |
3 | mulrid | ⊢ .r = Slot ( .r ‘ ndx ) | |
4 | scandxnmulrndx | ⊢ ( Scalar ‘ ndx ) ≠ ( .r ‘ ndx ) | |
5 | 4 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( Scalar ‘ ndx ) |
6 | vscandxnmulrndx | ⊢ ( ·𝑠 ‘ ndx ) ≠ ( .r ‘ ndx ) | |
7 | 6 | necomi | ⊢ ( .r ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) |
8 | 1 3 5 7 | zlmlem | ⊢ ( .r ‘ 𝐺 ) = ( .r ‘ 𝑊 ) |
9 | 2 8 | eqtri | ⊢ · = ( .r ‘ 𝑊 ) |