Metamath Proof Explorer


Theorem znchr

Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypothesis znchr.y
|- Y = ( Z/nZ ` N )
Assertion znchr
|- ( N e. NN0 -> ( chr ` Y ) = N )

Proof

Step Hyp Ref Expression
1 znchr.y
 |-  Y = ( Z/nZ ` N )
2 1 zncrng
 |-  ( N e. NN0 -> Y e. CRing )
3 crngring
 |-  ( Y e. CRing -> Y e. Ring )
4 2 3 syl
 |-  ( N e. NN0 -> Y e. Ring )
5 nn0z
 |-  ( x e. NN0 -> x e. ZZ )
6 eqid
 |-  ( chr ` Y ) = ( chr ` Y )
7 eqid
 |-  ( ZRHom ` Y ) = ( ZRHom ` Y )
8 eqid
 |-  ( 0g ` Y ) = ( 0g ` Y )
9 6 7 8 chrdvds
 |-  ( ( Y e. Ring /\ x e. ZZ ) -> ( ( chr ` Y ) || x <-> ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) ) )
10 4 5 9 syl2an
 |-  ( ( N e. NN0 /\ x e. NN0 ) -> ( ( chr ` Y ) || x <-> ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) ) )
11 1 7 8 zndvds0
 |-  ( ( N e. NN0 /\ x e. ZZ ) -> ( ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) <-> N || x ) )
12 5 11 sylan2
 |-  ( ( N e. NN0 /\ x e. NN0 ) -> ( ( ( ZRHom ` Y ) ` x ) = ( 0g ` Y ) <-> N || x ) )
13 10 12 bitrd
 |-  ( ( N e. NN0 /\ x e. NN0 ) -> ( ( chr ` Y ) || x <-> N || x ) )
14 13 ralrimiva
 |-  ( N e. NN0 -> A. x e. NN0 ( ( chr ` Y ) || x <-> N || x ) )
15 6 chrcl
 |-  ( Y e. Ring -> ( chr ` Y ) e. NN0 )
16 4 15 syl
 |-  ( N e. NN0 -> ( chr ` Y ) e. NN0 )
17 dvdsext
 |-  ( ( ( chr ` Y ) e. NN0 /\ N e. NN0 ) -> ( ( chr ` Y ) = N <-> A. x e. NN0 ( ( chr ` Y ) || x <-> N || x ) ) )
18 16 17 mpancom
 |-  ( N e. NN0 -> ( ( chr ` Y ) = N <-> A. x e. NN0 ( ( chr ` Y ) || x <-> N || x ) ) )
19 14 18 mpbird
 |-  ( N e. NN0 -> ( chr ` Y ) = N )