Metamath Proof Explorer


Theorem znchr

Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypothesis znchr.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
Assertion znchr ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) = 𝑁 )

Proof

Step Hyp Ref Expression
1 znchr.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
2 1 zncrng ( 𝑁 ∈ ℕ0𝑌 ∈ CRing )
3 crngring ( 𝑌 ∈ CRing → 𝑌 ∈ Ring )
4 2 3 syl ( 𝑁 ∈ ℕ0𝑌 ∈ Ring )
5 nn0z ( 𝑥 ∈ ℕ0𝑥 ∈ ℤ )
6 eqid ( chr ‘ 𝑌 ) = ( chr ‘ 𝑌 )
7 eqid ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 )
8 eqid ( 0g𝑌 ) = ( 0g𝑌 )
9 6 7 8 chrdvds ( ( 𝑌 ∈ Ring ∧ 𝑥 ∈ ℤ ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g𝑌 ) ) )
10 4 5 9 syl2an ( ( 𝑁 ∈ ℕ0𝑥 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥 ↔ ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g𝑌 ) ) )
11 1 7 8 zndvds0 ( ( 𝑁 ∈ ℕ0𝑥 ∈ ℤ ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g𝑌 ) ↔ 𝑁𝑥 ) )
12 5 11 sylan2 ( ( 𝑁 ∈ ℕ0𝑥 ∈ ℕ0 ) → ( ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑥 ) = ( 0g𝑌 ) ↔ 𝑁𝑥 ) )
13 10 12 bitrd ( ( 𝑁 ∈ ℕ0𝑥 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) ∥ 𝑥𝑁𝑥 ) )
14 13 ralrimiva ( 𝑁 ∈ ℕ0 → ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥𝑁𝑥 ) )
15 6 chrcl ( 𝑌 ∈ Ring → ( chr ‘ 𝑌 ) ∈ ℕ0 )
16 4 15 syl ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) ∈ ℕ0 )
17 dvdsext ( ( ( chr ‘ 𝑌 ) ∈ ℕ0𝑁 ∈ ℕ0 ) → ( ( chr ‘ 𝑌 ) = 𝑁 ↔ ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥𝑁𝑥 ) ) )
18 16 17 mpancom ( 𝑁 ∈ ℕ0 → ( ( chr ‘ 𝑌 ) = 𝑁 ↔ ∀ 𝑥 ∈ ℕ0 ( ( chr ‘ 𝑌 ) ∥ 𝑥𝑁𝑥 ) ) )
19 14 18 mpbird ( 𝑁 ∈ ℕ0 → ( chr ‘ 𝑌 ) = 𝑁 )