Metamath Proof Explorer


Theorem zndvds0

Description: Special case of zndvds when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses zncyg.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
zndvds.2 𝐿 = ( ℤRHom ‘ 𝑌 )
zndvds0.3 0 = ( 0g𝑌 )
Assertion zndvds0 ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( ( 𝐿𝐴 ) = 0𝑁𝐴 ) )

Proof

Step Hyp Ref Expression
1 zncyg.y 𝑌 = ( ℤ/nℤ ‘ 𝑁 )
2 zndvds.2 𝐿 = ( ℤRHom ‘ 𝑌 )
3 zndvds0.3 0 = ( 0g𝑌 )
4 0z 0 ∈ ℤ
5 1 2 zndvds ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) → ( ( 𝐿𝐴 ) = ( 𝐿 ‘ 0 ) ↔ 𝑁 ∥ ( 𝐴 − 0 ) ) )
6 4 5 mp3an3 ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( ( 𝐿𝐴 ) = ( 𝐿 ‘ 0 ) ↔ 𝑁 ∥ ( 𝐴 − 0 ) ) )
7 1 zncrng ( 𝑁 ∈ ℕ0𝑌 ∈ CRing )
8 7 adantr ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → 𝑌 ∈ CRing )
9 crngring ( 𝑌 ∈ CRing → 𝑌 ∈ Ring )
10 2 zrhrhm ( 𝑌 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑌 ) )
11 8 9 10 3syl ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → 𝐿 ∈ ( ℤring RingHom 𝑌 ) )
12 rhmghm ( 𝐿 ∈ ( ℤring RingHom 𝑌 ) → 𝐿 ∈ ( ℤring GrpHom 𝑌 ) )
13 zring0 0 = ( 0g ‘ ℤring )
14 13 3 ghmid ( 𝐿 ∈ ( ℤring GrpHom 𝑌 ) → ( 𝐿 ‘ 0 ) = 0 )
15 11 12 14 3syl ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( 𝐿 ‘ 0 ) = 0 )
16 15 eqeq2d ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( ( 𝐿𝐴 ) = ( 𝐿 ‘ 0 ) ↔ ( 𝐿𝐴 ) = 0 ) )
17 simpr ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → 𝐴 ∈ ℤ )
18 17 zcnd ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → 𝐴 ∈ ℂ )
19 18 subid1d ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( 𝐴 − 0 ) = 𝐴 )
20 19 breq2d ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( 𝑁 ∥ ( 𝐴 − 0 ) ↔ 𝑁𝐴 ) )
21 6 16 20 3bitr3d ( ( 𝑁 ∈ ℕ0𝐴 ∈ ℤ ) → ( ( 𝐿𝐴 ) = 0𝑁𝐴 ) )