Metamath Proof Explorer


Theorem zndvds0

Description: Special case of zndvds when one argument is zero. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypotheses zncyg.y Y=/N
zndvds.2 L=ℤRHomY
zndvds0.3 0˙=0Y
Assertion zndvds0 N0ALA=0˙NA

Proof

Step Hyp Ref Expression
1 zncyg.y Y=/N
2 zndvds.2 L=ℤRHomY
3 zndvds0.3 0˙=0Y
4 0z 0
5 1 2 zndvds N0A0LA=L0NA0
6 4 5 mp3an3 N0ALA=L0NA0
7 1 zncrng N0YCRing
8 7 adantr N0AYCRing
9 crngring YCRingYRing
10 2 zrhrhm YRingLringRingHomY
11 8 9 10 3syl N0ALringRingHomY
12 rhmghm LringRingHomYLringGrpHomY
13 zring0 0=0ring
14 13 3 ghmid LringGrpHomYL0=0˙
15 11 12 14 3syl N0AL0=0˙
16 15 eqeq2d N0ALA=L0LA=0˙
17 simpr N0AA
18 17 zcnd N0AA
19 18 subid1d N0AA0=A
20 19 breq2d N0ANA0NA
21 6 16 20 3bitr3d N0ALA=0˙NA