Metamath Proof Explorer


Definition df-rnghom

Description: Define the set of ring homomorphisms from r to s . (Contributed by Stefan O'Rear, 7-Mar-2015)

Ref Expression
Assertion df-rnghom RingHom=rRing,sRingBaser/vBases/wfwv|f1r=1sxvyvfx+ry=fx+sfyfxry=fxsfy

Detailed syntax breakdown

Step Hyp Ref Expression
0 crh classRingHom
1 vr setvarr
2 crg classRing
3 vs setvars
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 vv setvarv
8 3 cv setvars
9 8 4 cfv classBases
10 vw setvarw
11 vf setvarf
12 10 cv setvarw
13 cmap class𝑚
14 7 cv setvarv
15 12 14 13 co classwv
16 11 cv setvarf
17 cur class1r
18 5 17 cfv class1r
19 18 16 cfv classf1r
20 8 17 cfv class1s
21 19 20 wceq wfff1r=1s
22 vx setvarx
23 vy setvary
24 22 cv setvarx
25 cplusg class+𝑔
26 5 25 cfv class+r
27 23 cv setvary
28 24 27 26 co classx+ry
29 28 16 cfv classfx+ry
30 24 16 cfv classfx
31 8 25 cfv class+s
32 27 16 cfv classfy
33 30 32 31 co classfx+sfy
34 29 33 wceq wfffx+ry=fx+sfy
35 cmulr class𝑟
36 5 35 cfv classr
37 24 27 36 co classxry
38 37 16 cfv classfxry
39 8 35 cfv classs
40 30 32 39 co classfxsfy
41 38 40 wceq wfffxry=fxsfy
42 34 41 wa wfffx+ry=fx+sfyfxry=fxsfy
43 42 23 14 wral wffyvfx+ry=fx+sfyfxry=fxsfy
44 43 22 14 wral wffxvyvfx+ry=fx+sfyfxry=fxsfy
45 21 44 wa wfff1r=1sxvyvfx+ry=fx+sfyfxry=fxsfy
46 45 11 15 crab classfwv|f1r=1sxvyvfx+ry=fx+sfyfxry=fxsfy
47 10 9 46 csb classBases/wfwv|f1r=1sxvyvfx+ry=fx+sfyfxry=fxsfy
48 7 6 47 csb classBaser/vBases/wfwv|f1r=1sxvyvfx+ry=fx+sfyfxry=fxsfy
49 1 3 2 2 48 cmpo classrRing,sRingBaser/vBases/wfwv|f1r=1sxvyvfx+ry=fx+sfyfxry=fxsfy
50 0 49 wceq wffRingHom=rRing,sRingBaser/vBases/wfwv|f1r=1sxvyvfx+ry=fx+sfyfxry=fxsfy