Metamath Proof Explorer


Definition df-ring

Description: Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in BourbakiAlg1 p. 92 or definition of a ring with identity in part Preliminaries of Roman p. 19. So that the additive structure must be abelian (see ringcom ), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. (Contributed by NM, 18-Oct-2012) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Assertion df-ring Ring=fGrp|mulGrpfMnd[˙Basef/r]˙[˙+f/p]˙[˙f/t]˙xryrzrxtypz=xtypxtzxpytz=xtzpytz

Detailed syntax breakdown

Step Hyp Ref Expression
0 crg classRing
1 vf setvarf
2 cgrp classGrp
3 cmgp classmulGrp
4 1 cv setvarf
5 4 3 cfv classmulGrpf
6 cmnd classMnd
7 5 6 wcel wffmulGrpfMnd
8 cbs classBase
9 4 8 cfv classBasef
10 vr setvarr
11 cplusg class+𝑔
12 4 11 cfv class+f
13 vp setvarp
14 cmulr class𝑟
15 4 14 cfv classf
16 vt setvart
17 vx setvarx
18 10 cv setvarr
19 vy setvary
20 vz setvarz
21 17 cv setvarx
22 16 cv setvart
23 19 cv setvary
24 13 cv setvarp
25 20 cv setvarz
26 23 25 24 co classypz
27 21 26 22 co classxtypz
28 21 23 22 co classxty
29 21 25 22 co classxtz
30 28 29 24 co classxtypxtz
31 27 30 wceq wffxtypz=xtypxtz
32 21 23 24 co classxpy
33 32 25 22 co classxpytz
34 23 25 22 co classytz
35 29 34 24 co classxtzpytz
36 33 35 wceq wffxpytz=xtzpytz
37 31 36 wa wffxtypz=xtypxtzxpytz=xtzpytz
38 37 20 18 wral wffzrxtypz=xtypxtzxpytz=xtzpytz
39 38 19 18 wral wffyrzrxtypz=xtypxtzxpytz=xtzpytz
40 39 17 18 wral wffxryrzrxtypz=xtypxtzxpytz=xtzpytz
41 40 16 15 wsbc wff[˙f/t]˙xryrzrxtypz=xtypxtzxpytz=xtzpytz
42 41 13 12 wsbc wff[˙+f/p]˙[˙f/t]˙xryrzrxtypz=xtypxtzxpytz=xtzpytz
43 42 10 9 wsbc wff[˙Basef/r]˙[˙+f/p]˙[˙f/t]˙xryrzrxtypz=xtypxtzxpytz=xtzpytz
44 7 43 wa wffmulGrpfMnd[˙Basef/r]˙[˙+f/p]˙[˙f/t]˙xryrzrxtypz=xtypxtzxpytz=xtzpytz
45 44 1 2 crab classfGrp|mulGrpfMnd[˙Basef/r]˙[˙+f/p]˙[˙f/t]˙xryrzrxtypz=xtypxtzxpytz=xtzpytz
46 0 45 wceq wffRing=fGrp|mulGrpfMnd[˙Basef/r]˙[˙+f/p]˙[˙f/t]˙xryrzrxtypz=xtypxtzxpytz=xtzpytz