| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							crg | 
							⊢ Ring  | 
						
						
							| 1 | 
							
								
							 | 
							vf | 
							⊢ 𝑓  | 
						
						
							| 2 | 
							
								
							 | 
							cgrp | 
							⊢ Grp  | 
						
						
							| 3 | 
							
								
							 | 
							cmgp | 
							⊢ mulGrp  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							⊢ 𝑓  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							⊢ ( mulGrp ‘ 𝑓 )  | 
						
						
							| 6 | 
							
								
							 | 
							cmnd | 
							⊢ Mnd  | 
						
						
							| 7 | 
							
								5 6
							 | 
							wcel | 
							⊢ ( mulGrp ‘ 𝑓 )  ∈  Mnd  | 
						
						
							| 8 | 
							
								
							 | 
							cbs | 
							⊢ Base  | 
						
						
							| 9 | 
							
								4 8
							 | 
							cfv | 
							⊢ ( Base ‘ 𝑓 )  | 
						
						
							| 10 | 
							
								
							 | 
							vr | 
							⊢ 𝑟  | 
						
						
							| 11 | 
							
								
							 | 
							cplusg | 
							⊢ +g  | 
						
						
							| 12 | 
							
								4 11
							 | 
							cfv | 
							⊢ ( +g ‘ 𝑓 )  | 
						
						
							| 13 | 
							
								
							 | 
							vp | 
							⊢ 𝑝  | 
						
						
							| 14 | 
							
								
							 | 
							cmulr | 
							⊢ .r  | 
						
						
							| 15 | 
							
								4 14
							 | 
							cfv | 
							⊢ ( .r ‘ 𝑓 )  | 
						
						
							| 16 | 
							
								
							 | 
							vt | 
							⊢ 𝑡  | 
						
						
							| 17 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 18 | 
							
								10
							 | 
							cv | 
							⊢ 𝑟  | 
						
						
							| 19 | 
							
								
							 | 
							vy | 
							⊢ 𝑦  | 
						
						
							| 20 | 
							
								
							 | 
							vz | 
							⊢ 𝑧  | 
						
						
							| 21 | 
							
								17
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 22 | 
							
								16
							 | 
							cv | 
							⊢ 𝑡  | 
						
						
							| 23 | 
							
								19
							 | 
							cv | 
							⊢ 𝑦  | 
						
						
							| 24 | 
							
								13
							 | 
							cv | 
							⊢ 𝑝  | 
						
						
							| 25 | 
							
								20
							 | 
							cv | 
							⊢ 𝑧  | 
						
						
							| 26 | 
							
								23 25 24
							 | 
							co | 
							⊢ ( 𝑦 𝑝 𝑧 )  | 
						
						
							| 27 | 
							
								21 26 22
							 | 
							co | 
							⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  | 
						
						
							| 28 | 
							
								21 23 22
							 | 
							co | 
							⊢ ( 𝑥 𝑡 𝑦 )  | 
						
						
							| 29 | 
							
								21 25 22
							 | 
							co | 
							⊢ ( 𝑥 𝑡 𝑧 )  | 
						
						
							| 30 | 
							
								28 29 24
							 | 
							co | 
							⊢ ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  | 
						
						
							| 31 | 
							
								27 30
							 | 
							wceq | 
							⊢ ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  | 
						
						
							| 32 | 
							
								21 23 24
							 | 
							co | 
							⊢ ( 𝑥 𝑝 𝑦 )  | 
						
						
							| 33 | 
							
								32 25 22
							 | 
							co | 
							⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  | 
						
						
							| 34 | 
							
								23 25 22
							 | 
							co | 
							⊢ ( 𝑦 𝑡 𝑧 )  | 
						
						
							| 35 | 
							
								29 34 24
							 | 
							co | 
							⊢ ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) )  | 
						
						
							| 36 | 
							
								33 35
							 | 
							wceq | 
							⊢ ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) )  | 
						
						
							| 37 | 
							
								31 36
							 | 
							wa | 
							⊢ ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  | 
						
						
							| 38 | 
							
								37 20 18
							 | 
							wral | 
							⊢ ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  | 
						
						
							| 39 | 
							
								38 19 18
							 | 
							wral | 
							⊢ ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  | 
						
						
							| 40 | 
							
								39 17 18
							 | 
							wral | 
							⊢ ∀ 𝑥  ∈  𝑟 ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  | 
						
						
							| 41 | 
							
								40 16 15
							 | 
							wsbc | 
							⊢ [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑟 ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  | 
						
						
							| 42 | 
							
								41 13 12
							 | 
							wsbc | 
							⊢ [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑟 ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  | 
						
						
							| 43 | 
							
								42 10 9
							 | 
							wsbc | 
							⊢ [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑟 ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) )  | 
						
						
							| 44 | 
							
								7 43
							 | 
							wa | 
							⊢ ( ( mulGrp ‘ 𝑓 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑟 ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) )  | 
						
						
							| 45 | 
							
								44 1 2
							 | 
							crab | 
							⊢ { 𝑓  ∈  Grp  ∣  ( ( mulGrp ‘ 𝑓 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑟 ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) }  | 
						
						
							| 46 | 
							
								0 45
							 | 
							wceq | 
							⊢ Ring  =  { 𝑓  ∈  Grp  ∣  ( ( mulGrp ‘ 𝑓 )  ∈  Mnd  ∧  [ ( Base ‘ 𝑓 )  /  𝑟 ] [ ( +g ‘ 𝑓 )  /  𝑝 ] [ ( .r ‘ 𝑓 )  /  𝑡 ] ∀ 𝑥  ∈  𝑟 ∀ 𝑦  ∈  𝑟 ∀ 𝑧  ∈  𝑟 ( ( 𝑥 𝑡 ( 𝑦 𝑝 𝑧 ) )  =  ( ( 𝑥 𝑡 𝑦 ) 𝑝 ( 𝑥 𝑡 𝑧 ) )  ∧  ( ( 𝑥 𝑝 𝑦 ) 𝑡 𝑧 )  =  ( ( 𝑥 𝑡 𝑧 ) 𝑝 ( 𝑦 𝑡 𝑧 ) ) ) ) }  |