Metamath Proof Explorer


Theorem crngring

Description: A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion crngring RCRingRRing

Proof

Step Hyp Ref Expression
1 eqid mulGrpR=mulGrpR
2 1 iscrng RCRingRRingmulGrpRCMnd
3 2 simplbi RCRingRRing