Metamath Proof Explorer


Definition df-zn

Description: Define the ring of integers mod n . This is literally the quotient ring of ZZ by the ideal n ZZ , but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Assertion df-zn ℤ/nℤ=n0ring/zz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 czn classℤ/nℤ
1 vn setvarn
2 cn0 class0
3 czring classring
4 vz setvarz
5 4 cv setvarz
6 cqus class/𝑠
7 cqg class~QG
8 crsp classRSpan
9 5 8 cfv classRSpanz
10 1 cv setvarn
11 10 csn classn
12 11 9 cfv classRSpanzn
13 5 12 7 co classz~QGRSpanzn
14 5 13 6 co classz/𝑠z~QGRSpanzn
15 vs setvars
16 15 cv setvars
17 csts classsSet
18 cple classle
19 cnx classndx
20 19 18 cfv classndx
21 czrh classℤRHom
22 16 21 cfv classℤRHoms
23 cc0 class0
24 10 23 wceq wffn=0
25 cz class
26 cfzo class..^
27 23 10 26 co class0..^n
28 24 25 27 cif classifn=00..^n
29 22 28 cres classℤRHomsifn=00..^n
30 vf setvarf
31 30 cv setvarf
32 cle class
33 31 32 ccom classf
34 31 ccnv classf-1
35 33 34 ccom classff-1
36 30 29 35 csb classℤRHomsifn=00..^n/fff-1
37 20 36 cop classndxℤRHomsifn=00..^n/fff-1
38 16 37 17 co classssSetndxℤRHomsifn=00..^n/fff-1
39 15 14 38 csb classz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1
40 4 3 39 csb classring/zz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1
41 1 2 40 cmpt classn0ring/zz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1
42 0 41 wceq wffℤ/nℤ=n0ring/zz/𝑠z~QGRSpanzn/sssSetndxℤRHomsifn=00..^n/fff-1