Metamath Proof Explorer


Definition df-zn

Description: Define the ring of integers mod n . This is literally the quotient ring of ZZ by the ideal n ZZ , but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)

Ref Expression
Assertion df-zn ℤ/nℤ = n 0 ring / z z / 𝑠 z ~ QG RSpan z n / s s sSet ndx ℤRHom s if n = 0 0 ..^ n / f f f -1

Detailed syntax breakdown

Step Hyp Ref Expression
0 czn class ℤ/nℤ
1 vn setvar n
2 cn0 class 0
3 czring class ring
4 vz setvar z
5 4 cv setvar z
6 cqus class / 𝑠
7 cqg class ~ QG
8 crsp class RSpan
9 5 8 cfv class RSpan z
10 1 cv setvar n
11 10 csn class n
12 11 9 cfv class RSpan z n
13 5 12 7 co class z ~ QG RSpan z n
14 5 13 6 co class z / 𝑠 z ~ QG RSpan z n
15 vs setvar s
16 15 cv setvar s
17 csts class sSet
18 cple class le
19 cnx class ndx
20 19 18 cfv class ndx
21 czrh class ℤRHom
22 16 21 cfv class ℤRHom s
23 cc0 class 0
24 10 23 wceq wff n = 0
25 cz class
26 cfzo class ..^
27 23 10 26 co class 0 ..^ n
28 24 25 27 cif class if n = 0 0 ..^ n
29 22 28 cres class ℤRHom s if n = 0 0 ..^ n
30 vf setvar f
31 30 cv setvar f
32 cle class
33 31 32 ccom class f
34 31 ccnv class f -1
35 33 34 ccom class f f -1
36 30 29 35 csb class ℤRHom s if n = 0 0 ..^ n / f f f -1
37 20 36 cop class ndx ℤRHom s if n = 0 0 ..^ n / f f f -1
38 16 37 17 co class s sSet ndx ℤRHom s if n = 0 0 ..^ n / f f f -1
39 15 14 38 csb class z / 𝑠 z ~ QG RSpan z n / s s sSet ndx ℤRHom s if n = 0 0 ..^ n / f f f -1
40 4 3 39 csb class ring / z z / 𝑠 z ~ QG RSpan z n / s s sSet ndx ℤRHom s if n = 0 0 ..^ n / f f f -1
41 1 2 40 cmpt class n 0 ring / z z / 𝑠 z ~ QG RSpan z n / s s sSet ndx ℤRHom s if n = 0 0 ..^ n / f f f -1
42 0 41 wceq wff ℤ/nℤ = n 0 ring / z z / 𝑠 z ~ QG RSpan z n / s s sSet ndx ℤRHom s if n = 0 0 ..^ n / f f f -1