Description: Define the ring of integers mod n . This is literally the quotient ring of ZZ by the ideal n ZZ , but we augment it with a total order. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | df-zn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | czn | |
|
1 | vn | |
|
2 | cn0 | |
|
3 | czring | |
|
4 | vz | |
|
5 | 4 | cv | |
6 | cqus | |
|
7 | cqg | |
|
8 | crsp | |
|
9 | 5 8 | cfv | |
10 | 1 | cv | |
11 | 10 | csn | |
12 | 11 9 | cfv | |
13 | 5 12 7 | co | |
14 | 5 13 6 | co | |
15 | vs | |
|
16 | 15 | cv | |
17 | csts | |
|
18 | cple | |
|
19 | cnx | |
|
20 | 19 18 | cfv | |
21 | czrh | |
|
22 | 16 21 | cfv | |
23 | cc0 | |
|
24 | 10 23 | wceq | |
25 | cz | |
|
26 | cfzo | |
|
27 | 23 10 26 | co | |
28 | 24 25 27 | cif | |
29 | 22 28 | cres | |
30 | vf | |
|
31 | 30 | cv | |
32 | cle | |
|
33 | 31 32 | ccom | |
34 | 31 | ccnv | |
35 | 33 34 | ccom | |
36 | 30 29 35 | csb | |
37 | 20 36 | cop | |
38 | 16 37 17 | co | |
39 | 15 14 38 | csb | |
40 | 4 3 39 | csb | |
41 | 1 2 40 | cmpt | |
42 | 0 41 | wceq | |