Metamath Proof Explorer


Theorem znadd

Description: The additive structure of Z/nZ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 3-Nov-2024)

Ref Expression
Hypotheses znval2.s
|- S = ( RSpan ` ZZring )
znval2.u
|- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) )
znval2.y
|- Y = ( Z/nZ ` N )
Assertion znadd
|- ( N e. NN0 -> ( +g ` U ) = ( +g ` Y ) )

Proof

Step Hyp Ref Expression
1 znval2.s
 |-  S = ( RSpan ` ZZring )
2 znval2.u
 |-  U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) )
3 znval2.y
 |-  Y = ( Z/nZ ` N )
4 plusgid
 |-  +g = Slot ( +g ` ndx )
5 plendxnplusgndx
 |-  ( le ` ndx ) =/= ( +g ` ndx )
6 5 necomi
 |-  ( +g ` ndx ) =/= ( le ` ndx )
7 1 2 3 4 6 znbaslem
 |-  ( N e. NN0 -> ( +g ` U ) = ( +g ` Y ) )