Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Algebraic constructions based on the complex numbers
znadd
Metamath Proof Explorer
Description: The additive structure of Z/nZ is the same as the quotient ring it
is based on. (Contributed by Mario Carneiro , 15-Jun-2015) (Revised by AV , 13-Jun-2019) (Revised by AV , 3-Nov-2024)
Ref
Expression
Hypotheses
znval2.s
⊢ S = RSpan ⁡ ℤ ring
znval2.u
⊢ U = ℤ ring / 𝑠 ℤ ring ~ QG S ⁡ N
znval2.y
⊢ Y = ℤ / N ℤ
Assertion
znadd
⊢ N ∈ ℕ 0 → + U = + Y
Proof
Step
Hyp
Ref
Expression
1
znval2.s
⊢ S = RSpan ⁡ ℤ ring
2
znval2.u
⊢ U = ℤ ring / 𝑠 ℤ ring ~ QG S ⁡ N
3
znval2.y
⊢ Y = ℤ / N ℤ
4
plusgid
⊢ + 𝑔 = Slot + ndx
5
plendxnplusgndx
⊢ ≤ ndx ≠ + ndx
6
5
necomi
⊢ + ndx ≠ ≤ ndx
7
1 2 3 4 6
znbaslem
⊢ N ∈ ℕ 0 → + U = + Y