| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygzn.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | cygzn.n |  |-  N = if ( B e. Fin , ( # ` B ) , 0 ) | 
						
							| 3 |  | cygzn.y |  |-  Y = ( Z/nZ ` N ) | 
						
							| 4 |  | cygzn.m |  |-  .x. = ( .g ` G ) | 
						
							| 5 |  | cygzn.l |  |-  L = ( ZRHom ` Y ) | 
						
							| 6 |  | cygzn.e |  |-  E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } | 
						
							| 7 |  | cygzn.g |  |-  ( ph -> G e. CycGrp ) | 
						
							| 8 |  | cygzn.x |  |-  ( ph -> X e. E ) | 
						
							| 9 |  | hashcl |  |-  ( B e. Fin -> ( # ` B ) e. NN0 ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ B e. Fin ) -> ( # ` B ) e. NN0 ) | 
						
							| 11 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 12 | 11 | a1i |  |-  ( ( ph /\ -. B e. Fin ) -> 0 e. NN0 ) | 
						
							| 13 | 10 12 | ifclda |  |-  ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) e. NN0 ) | 
						
							| 14 | 2 13 | eqeltrid |  |-  ( ph -> N e. NN0 ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> N e. NN0 ) | 
						
							| 16 |  | simprl |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> K e. ZZ ) | 
						
							| 17 |  | simprr |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> M e. ZZ ) | 
						
							| 18 | 3 5 | zndvds |  |-  ( ( N e. NN0 /\ K e. ZZ /\ M e. ZZ ) -> ( ( L ` K ) = ( L ` M ) <-> N || ( K - M ) ) ) | 
						
							| 19 | 15 16 17 18 | syl3anc |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( L ` K ) = ( L ` M ) <-> N || ( K - M ) ) ) | 
						
							| 20 |  | cyggrp |  |-  ( G e. CycGrp -> G e. Grp ) | 
						
							| 21 | 7 20 | syl |  |-  ( ph -> G e. Grp ) | 
						
							| 22 |  | eqid |  |-  ( od ` G ) = ( od ` G ) | 
						
							| 23 | 1 4 6 22 | cyggenod2 |  |-  ( ( G e. Grp /\ X e. E ) -> ( ( od ` G ) ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) | 
						
							| 24 | 21 8 23 | syl2anc |  |-  ( ph -> ( ( od ` G ) ` X ) = if ( B e. Fin , ( # ` B ) , 0 ) ) | 
						
							| 25 | 24 2 | eqtr4di |  |-  ( ph -> ( ( od ` G ) ` X ) = N ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( od ` G ) ` X ) = N ) | 
						
							| 27 | 26 | breq1d |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> N || ( K - M ) ) ) | 
						
							| 28 | 21 | adantr |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> G e. Grp ) | 
						
							| 29 | 1 4 6 | iscyggen |  |-  ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) | 
						
							| 30 | 29 | simplbi |  |-  ( X e. E -> X e. B ) | 
						
							| 31 | 8 30 | syl |  |-  ( ph -> X e. B ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> X e. B ) | 
						
							| 33 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 34 | 1 22 4 33 | odcong |  |-  ( ( G e. Grp /\ X e. B /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> ( K .x. X ) = ( M .x. X ) ) ) | 
						
							| 35 | 28 32 16 17 34 | syl112anc |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( ( od ` G ) ` X ) || ( K - M ) <-> ( K .x. X ) = ( M .x. X ) ) ) | 
						
							| 36 | 19 27 35 | 3bitr2d |  |-  ( ( ph /\ ( K e. ZZ /\ M e. ZZ ) ) -> ( ( L ` K ) = ( L ` M ) <-> ( K .x. X ) = ( M .x. X ) ) ) |