| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygzn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cygzn.n | ⊢ 𝑁  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) | 
						
							| 3 |  | cygzn.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 4 |  | cygzn.m | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 5 |  | cygzn.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 6 |  | cygzn.e | ⊢ 𝐸  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑥 ) )  =  𝐵 } | 
						
							| 7 |  | cygzn.g | ⊢ ( 𝜑  →  𝐺  ∈  CycGrp ) | 
						
							| 8 |  | cygzn.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐸 ) | 
						
							| 9 |  | hashcl | ⊢ ( 𝐵  ∈  Fin  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝜑  ∧  𝐵  ∈  Fin )  →  ( ♯ ‘ 𝐵 )  ∈  ℕ0 ) | 
						
							| 11 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  ¬  𝐵  ∈  Fin )  →  0  ∈  ℕ0 ) | 
						
							| 13 | 10 12 | ifclda | ⊢ ( 𝜑  →  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 14 | 2 13 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 16 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝐾  ∈  ℤ ) | 
						
							| 17 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝑀  ∈  ℤ ) | 
						
							| 18 | 3 5 | zndvds | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( 𝐿 ‘ 𝐾 )  =  ( 𝐿 ‘ 𝑀 )  ↔  𝑁  ∥  ( 𝐾  −  𝑀 ) ) ) | 
						
							| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( 𝐿 ‘ 𝐾 )  =  ( 𝐿 ‘ 𝑀 )  ↔  𝑁  ∥  ( 𝐾  −  𝑀 ) ) ) | 
						
							| 20 |  | cyggrp | ⊢ ( 𝐺  ∈  CycGrp  →  𝐺  ∈  Grp ) | 
						
							| 21 | 7 20 | syl | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 22 |  | eqid | ⊢ ( od ‘ 𝐺 )  =  ( od ‘ 𝐺 ) | 
						
							| 23 | 1 4 6 22 | cyggenod2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐸 )  →  ( ( od ‘ 𝐺 ) ‘ 𝑋 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 24 | 21 8 23 | syl2anc | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝑋 )  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) ) | 
						
							| 25 | 24 2 | eqtr4di | ⊢ ( 𝜑  →  ( ( od ‘ 𝐺 ) ‘ 𝑋 )  =  𝑁 ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( od ‘ 𝐺 ) ‘ 𝑋 )  =  𝑁 ) | 
						
							| 27 | 26 | breq1d | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑋 )  ∥  ( 𝐾  −  𝑀 )  ↔  𝑁  ∥  ( 𝐾  −  𝑀 ) ) ) | 
						
							| 28 | 21 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝐺  ∈  Grp ) | 
						
							| 29 | 1 4 6 | iscyggen | ⊢ ( 𝑋  ∈  𝐸  ↔  ( 𝑋  ∈  𝐵  ∧  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛  ·  𝑋 ) )  =  𝐵 ) ) | 
						
							| 30 | 29 | simplbi | ⊢ ( 𝑋  ∈  𝐸  →  𝑋  ∈  𝐵 ) | 
						
							| 31 | 8 30 | syl | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 33 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 34 | 1 22 4 33 | odcong | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑋 )  ∥  ( 𝐾  −  𝑀 )  ↔  ( 𝐾  ·  𝑋 )  =  ( 𝑀  ·  𝑋 ) ) ) | 
						
							| 35 | 28 32 16 17 34 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( ( od ‘ 𝐺 ) ‘ 𝑋 )  ∥  ( 𝐾  −  𝑀 )  ↔  ( 𝐾  ·  𝑋 )  =  ( 𝑀  ·  𝑋 ) ) ) | 
						
							| 36 | 19 27 35 | 3bitr2d | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ℤ  ∧  𝑀  ∈  ℤ ) )  →  ( ( 𝐿 ‘ 𝐾 )  =  ( 𝐿 ‘ 𝑀 )  ↔  ( 𝐾  ·  𝑋 )  =  ( 𝑀  ·  𝑋 ) ) ) |