Description: Conditional closure. (Contributed by Jeff Madsen, 2-Sep-2009)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ifclda.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ 𝐶 ) | |
ifclda.2 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 ∈ 𝐶 ) | ||
Assertion | ifclda | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifclda.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ 𝐶 ) | |
2 | ifclda.2 | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → 𝐵 ∈ 𝐶 ) | |
3 | iftrue | ⊢ ( 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 ) | |
4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 ) |
5 | 4 1 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |
6 | iffalse | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 ) | |
7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 ) |
8 | 7 2 | eqeltrd | ⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜓 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |
9 | 5 8 | pm2.61dan | ⊢ ( 𝜑 → if ( 𝜓 , 𝐴 , 𝐵 ) ∈ 𝐶 ) |