| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cygzn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | cygzn.n | ⊢ 𝑁  =  if ( 𝐵  ∈  Fin ,  ( ♯ ‘ 𝐵 ) ,  0 ) | 
						
							| 3 |  | cygzn.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 4 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  =  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } | 
						
							| 6 | 1 4 5 | iscyg2 | ⊢ ( 𝐺  ∈  CycGrp  ↔  ( 𝐺  ∈  Grp  ∧  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ≠  ∅ ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( 𝐺  ∈  CycGrp  →  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ≠  ∅ ) | 
						
							| 8 |  | n0 | ⊢ ( { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 }  ≠  ∅  ↔  ∃ 𝑔 𝑔  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝐺  ∈  CycGrp  →  ∃ 𝑔 𝑔  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } ) | 
						
							| 10 |  | eqid | ⊢ ( ℤRHom ‘ 𝑌 )  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐺  ∈  CycGrp  ∧  𝑔  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } )  →  𝐺  ∈  CycGrp ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐺  ∈  CycGrp  ∧  𝑔  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } )  →  𝑔  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } ) | 
						
							| 13 |  | eqid | ⊢ ran  ( 𝑚  ∈  ℤ  ↦  〈 ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑚 ) ,  ( 𝑚 ( .g ‘ 𝐺 ) 𝑔 ) 〉 )  =  ran  ( 𝑚  ∈  ℤ  ↦  〈 ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑚 ) ,  ( 𝑚 ( .g ‘ 𝐺 ) 𝑔 ) 〉 ) | 
						
							| 14 | 1 2 3 4 10 5 11 12 13 | cygznlem3 | ⊢ ( ( 𝐺  ∈  CycGrp  ∧  𝑔  ∈  { 𝑥  ∈  𝐵  ∣  ran  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) )  =  𝐵 } )  →  𝐺  ≃𝑔  𝑌 ) | 
						
							| 15 | 9 14 | exlimddv | ⊢ ( 𝐺  ∈  CycGrp  →  𝐺  ≃𝑔  𝑌 ) |